ナトリウムイオン電池の新設計指針を提示(Research provides new design specs for burgeoning sodium-ion batteries)

2025-11-20 ブラウン大学

ブラウン大学の研究チームは、次世代蓄電池として期待されるナトリウムイオン電池(SIB)の性能を大幅に向上させる新しい電極材料設計を報告した。SIB はリチウムより資源豊富で低コストだが、電極材料の体積膨張や構造劣化、イオン拡散の遅さによって性能が制限されてきた。本研究では、原子レベルで制御された「階層的欠陥構造(hierarchical defect engineering)」を導入することで、電極内部に高速イオン輸送経路を形成し、充放電を繰り返しても構造が安定することを証明した。特に、欠陥を戦略的に配置することで、ナトリウムイオンの拡散障壁が低下し、長寿命かつ高容量の電池動作が可能となった。実験では、従来材料に比べてサイクル安定性が大幅に向上し、低温環境や高速充電条件でも高い性能を維持。資源制約のないナトリウムを用いるこの技術は、再生可能エネルギー貯蔵や大規模電力網への応用が期待され、リチウム依存からの脱却に向けた重要な一歩と位置づけられている。

<関連情報>

ナトリウム化中のハードカーボン電極における細孔充填機構を制御する構造記述子 Structural descriptors controlling pore-filling mechanism in hard carbon electrode during sodiation

Lincoln Mtemeri and Yue Qi
EES Batteries  Published:4th November 2025
DOI:https://doi.org/10.1039/D5EB00210A

ナトリウムイオン電池の新設計指針を提示(Research provides new design specs for burgeoning sodium-ion batteries)

Abstract

Sodiation mechanism in hard carbons, despite their ambiguous structures, is widely understood to involve three stages: adsorption at defects and edges, intercalation between graphene layers, and nano-pore filling. Among these, nano-pore filling might be the most important sodiation stage with its characteristic low-voltage plateau (∼0.1 V) observed over an extended capacity range. To investigate the pore filling mechanism, we introduce a representative nanopore model based on zeolite-templated carbon (ZTC), which consists of mainly sp2-bonded carbon sheets curved into well-defined interconnected nanopores, facilitating well-defined pore descriptors. Three ZTC models with pore sizes of 8.8 Å, 10.1 Å, and 11.2 Å were selected to represent the ideal nanopore features in hard carbon. A pore-filling algorithm, along with density functional theory (DFT) and ab initio molecular dynamics (AIMD) calculations, was used to investigate the sodiation process within the nanopores. Simulations reveal that the pore filling starts from Na absorption near the carbon walls via ionic bonding. As Na filling progresses towards the center, the bonding character gradually transitions to more metallic. Consequently, smaller pores exhibit higher sodiation voltage than larger pores, agreeing with experimental observations. Notably, the ZTC structure with 11.2 Å pores has a plateau voltage that aligns closer to the experimentally observed 0.1 V. The theoretical capacity with favorable formation energies can reach up to NaC3 (∼470 mAh g−1), more than the theoretical capacity of LiC6. Comparing the pore filling of ZTC with carbon nanotubes suggests that the presence of non-6-carbon rings in ZTC facilitates charge transfer from Na to carbon, forming ionic bonds. Together, these descriptors – pore size, specific volume, and carbon topology offer design guidelines to quantify carbon electrode design for sodium-ion batteries.

0402電気応用
ad
ad
Follow
ad
タイトルとURLをコピーしました