希少な星系が銀河の炭素塵の起源を解明(Rare Star System Gives Insights into the Origins of Carbon Dust in the Galaxy)

2025-11-19 カリフォルニア工科大学 (Caltech)

米国カリフォルニア工科大学(California Institute of Technology)の発表によれば、NASA の James Webb Space Telescope(JWST)によって、連星系「Apep」と名付けられた希少な星系の詳細な中赤外画像が撮影されました。Apep 系は、2つの大質量終末期星(ウルフ–レイエ星:Wolf–Rayet star)が極めて近い軌道で共に回る系に加え、3番目の超巨星O型星が関与する三重構造であることが確認されました。星風が衝突することで生じる粉塵(特にアモルファス炭素を含む)が同心円状・螺旋状の殻を形成しており、これが銀河内に炭素資源を供給する「肥沃な場」として機能している可能性が示されました。星風の速度・粉塵の温度・軌道運動なども精密に測定され、これまで考えられていた遊牧的と見なされた星系が、実は高度に構造化された粉塵生成・放出系を持っていたことが明らかとなりました。この発見は、太陽系外での重元素・粉塵の起源を探る上で重要な手がかりであり、星間物質、惑星形成、そして銀河の化学進化の理解を深めるものです。

希少な星系が銀河の炭素塵の起源を解明(Rare Star System Gives Insights into the Origins of Carbon Dust in the Galaxy)
Webb’s mid-infrared image shows four coiled shells of dust around a pair of Wolf-Rayet stars known as Apep for the first time. Previous observations by other telescopes showed only one. Webb’s data also confirmed that there are three stars gravitationally bound to one another.Credit: Image: NASA, ESA, CSA, STScI; Science: Yinuo Han (Caltech), Ryan White (Macquarie University); Image Processing: Alyssa Pagan (STScI)

<関連情報>

JWSTが明らかにした衝突風連星アペプにおける塵の形成と進化 The Formation and Evolution of Dust in the Colliding-wind Binary Apep Revealed by JWST

Yinuo Han, Ryan M. T. White, Joseph R. Callingham, Ryan M. Lau, Benjamin J. S. Pope, Noel D. Richardson, and Peter G. Tuthill
The Astrophysical Journal  Published: 2025 November 19
DOI:10.3847/1538-4357/ae12e5

Abstract

Carbon-rich Wolf–Rayet (W-R) stars are significant contributors of carbonaceous dust to the galactic environment; however, the mechanisms and conditions for formation and subsequent evolution of dust around these stars remain open questions. Here we present JWST observations of the W-R+W-R colliding-wind binary Apep, which reveal an intricate series of nested concentric dust shells that are abundant in detailed substructure. The striking regularity in these substructures between successive shells suggests an exactly repeating formation mechanism combined with a highly stable outflow that maintains a consistent morphology even after reaching 0.6 pc (assuming a distance of 2.4 kpc) into the interstellar medium. The concentric dust shells show subtle deviations from spherical outflow, which could reflect orbital modulation along the eccentric binary orbit or nonsphericity in the stellar wind. Tracking the evolution of dust across the multitiered structure, we measure the dust temperature evolution that can broadly be described assuming an amorphous carbon composition in radiative thermal equilibrium with the central stars. The temperature profile and orbital period place new distance constraints that support Apep being at a greater distance than previously estimated, reducing the line-of-sight and sky-plane wind speed discrepancy previously thought to characterize the system.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました