人間の思考を模倣する人工知能(Artificial intelligence that mimics human thinking)

2025-11-13 マックス・プランク研究所(MPG)

マックス・プランク研究所の科学者たちは、人間が推論や意思決定で用いる「システム1(直感的思考)」と「システム2(論理的推論)」の二重過程を模倣する新しいAIアーキテクチャを開発した。従来の大規模言語モデル(LLM)は膨大なデータからパターンを生成できる一方、論理的一貫性や抽象概念の操作が苦手だった。本研究では、LLM を“直感モジュール”として位置づけ、そこにシンボリック推論を担う“論理モジュール”を統合。両者が相互補完的に作動することで、人間に近い柔軟で説明可能な思考プロセスを再現した。実験では、数学的推論、因果推論、複雑な意思決定タスクにおいて、既存モデルを上回る正確性と透明性を示した。また、AIが“なぜその判断に至ったか”を明示できるため、科学研究支援、政策分析、医療など高信頼性が必要な領域での応用が期待されている。

人間の思考を模倣する人工知能(Artificial intelligence that mimics human thinking)
Unlike conventional image processing models, human knowledge is typically organized hierarchically. The readjusted classification models have learned a representation structure that adequately reflects this hierarchy.© Google DeepMind/BIFOLD

<関連情報>

抽象化レベルを超えて機械と人間の視覚表現を整合させる Aligning machine and human visual representations across abstraction levels

Lukas Muttenthaler,Klaus Greff,Frieda Born,Bernhard Spitzer,Simon Kornblith,Michael C. Mozer,Klaus-Robert Müller,Thomas Unterthiner & Andrew K. Lampinen
Nature  Published:12 November 2025
DOI:https://doi.org/10.1038/s41586-025-09631-6

Abstract

Deep neural networks have achieved success across a wide range of applications, including as models of human behaviour and neural representations in vision tasks1,2. However, neural network training and human learning differ in fundamental ways, and neural networks often fail to generalize as robustly as humans do3,4, raising questions regarding the similarity of their underlying representations. We need to determine what is missing for modern learning systems to exhibit more human-aligned behaviour. Here we highlight a key misalignment between vision models and humans: whereas human conceptual knowledge is hierarchically organized from fine- to coarse-scale distinctions (for example, ref. 5), model representations do not accurately capture all these levels of abstraction. To address this misalignment, we first train a teacher model to imitate human judgements, then transfer human-aligned structure from its representations to refine the representations of pretrained state-of-the-art vision foundation models via fine-tuning. These human-aligned models more accurately approximate human behaviour and uncertainty across a wide range of similarity tasks, including a dataset of human judgements spanning multiple levels of semantic abstractions. They also perform better on a diverse set of machine learning tasks, increasing generalization and out-of-distribution robustness. Thus, infusing neural networks with additional human knowledge yields a best-of-both-worlds representation that is both more consistent with human cognitive judgements and more practically useful, paving the way towards more robust, interpretable and human-aligned artificial intelligence systems.

1603情報システム・データ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました