宇宙誕生の観測方法を模索(How can we observe the birth of the universe?)

2025-10-22 マックス・プランク研究所

マックス・プランク物理学研究所のレオ・ストドルスキー博士とジョセフ・シルク教授は、宇宙誕生直後を直接観測する新たな方法を提案した。現在、ビッグバン後38万年以前の宇宙は放射と物質が混ざった高温プラズマ状態にあり、光は散乱されて外へ出られず「観測のカーテン」となっている。研究者らは、この障壁を越える鍵として、ニュートリノや重力波など光に依存しない初期宇宙の痕跡信号に注目。これらを解析することで、エネルギーの爆発的放出や物質形成の瞬間を間接的に再構成できる可能性があるという。特に、宇宙マイクロ波背景放射(CMB)の“ホットスポット”解析や次世代ニュートリノ観測計画が、宇宙初期の物理法則解明に貢献する見通しが示された。

宇宙誕生の観測方法を模索(How can we observe the birth of the universe?)
The cosmic microwave background is a snapshot of the oldest light in the cosmos. It was imprinted on the sky when the universe was just 380,000 years old. The image is based on data from the Planck mission. The data may contain information that points to energy bursts shortly after the Big Bang, so called hot spots.
© ESA/Planck Collaboration

<関連情報>

初期宇宙からのバーストの信号 Signals of Bursts from the Very Early Universe

Leo Stodolsky and Joseph Silk
The Astrophysical Journal  Published 2025 October 15
DOI:10.3847/1538-4357/ae01a4

Abstract

We consider possible observable signals from explosive events in the very early Universe, dubbed “bursts.” These could be expected in connection with massive black hole or “baby Universe” formation. We anticipate that such major disruptions of spacetime would be associated with neutrino and perhaps other pulses. While these seem to be not detectable directly, we discuss how they could lead to potentially observable signals. We analyze how the pulses from very early times may “escape,” that is, propagate to the last scattering epoch at the time tcmb and later, or alternatively be absorbed earlier, i.e., “contained.” The possibly detectable signals include effects on small regions of the cosmic microwave background, a soft X-ray resulting from positron production, or a nonthermal addition to the relic neutrino background.

 

宇宙初期からの陽電子信号 Positron signal from the early Univere

Leo Stodolsky,Joseph Silk
Physical Review D  Published: 27 June, 2025
DOI: https://doi.org/10.1103/897z-1k7m

Abstract

Bursts from the very early Universe may lead to a detectable signal via the production of positrons, whose annihilation gives an observable x-ray signal. Using the absorption parameters for the annihilation photons of 511 keV, it is found that observable photons would originate at a redshift around ≈200–300, resulting in soft x-rays of energy ∼2–3  keV at present. Positrons are expected to be absent at these times or redshifts in the standard picture of the early universe. Detection of the x-rays would thus provide dramatic support for the hypothesis of the bursts, explosive events at very early times. We urge the search for such a signal.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました