ゼブラフィッシュのナビゲーション神経回路をロボットで再現(Roboticists reverse engineer zebrafish navigation)

2025-10-22 スイス連邦工科大学ローザンヌ校(EPFL)

ローザンヌ工科大学(EPFL)とデューク大学の研究者らは、ゼブラフィッシュ(シマウオ)の神経回路を再現し、視覚刺激に基づく遊泳制御メカニズムを解明した。実魚の脳活動データから視覚〜脊髄回路を再構築し、シミュレーションとロボット実験で水流中の姿勢維持行動(オプトモーター反応)を再現。神経信号の多くが網膜の一部領域から発していることや未知の神経型を予測した。80cmのロボット「Zbot」は実河川でも流れに抗して定位できた。研究は『Science Robotics』に掲載され、視覚だけで位置維持が可能であることを実証。脳・身体・環境の統合理解を目指す新たな生体模倣研究として注目される。

ゼブラフィッシュのナビゲーション神経回路をロボットで再現(Roboticists reverse engineer zebrafish navigation)
The larval zebrafish robot, Zbot. 2025 BioRob EPFL CC BY SA 4.0

<関連情報>

人工具現化回路が脊椎動物の視覚運動行動の神経構造を明らかにする Artificial embodied circuits uncover neural architectures of vertebrate visuomotor behaviors

Xiangxiao Liu, Matthew D. Loring, Luca Zunino, Kaitlyn E. Fouke, […] , and Eva A. Naumann
Science Robotics  Published:15 Oct 2025
DOI:https://doi.org/10.1126/scirobotics.adv4408

Abstract

Brains evolve within specific sensory and physical environments, yet neuroscience has traditionally focused on studying neural circuits in isolation. Understanding of their function requires integrative brain-body testing in realistic contexts. To investigate the neural and biomechanical mechanisms of sensorimotor transformations, we constructed realistic neuromechanical simulations (simZFish) of the zebrafish optomotor response, a visual stabilization behavior. By computationally reproducing the body mechanics, physical body-water interactions, hydrodynamics, visual environments, and experimentally derived neural network architectures, we closely replicated the behavior of real larval zebrafish. Through systematic manipulation of physiological and circuit connectivity features, impossible in biological experiments, we demonstrate how embodiment shapes neural activity, circuit architecture, and behavior. Changing lens properties and retinal connectivity revealed why the lower posterior visual field drives optimal optomotor responses in the simZFish, explaining receptive field properties observed in real zebrafish. When challenged with novel visual stimuli, the simZFish predicted previously unknown neuronal response types, which we identified via two-photon calcium imaging in the live brains of real zebrafish and incorporated to update the simZFish neural network. In virtual rivers, the simZFish performed rheotaxis autonomously by using current-induced optic flow patterns as navigational cues, compensating for the simulated water flow. Last, experiments with a physical robot (ZBot) validated the role of embodied sensorimotor circuits in maintaining position in a real river with complex fluid dynamics and visual environments. By iterating between simulations, behavioral observations, neural imaging, and robotic testing, we demonstrate the power of integrative approaches to investigating sensorimotor processing, providing insights into embodied neural circuit functions.

0109ロボット
ad
ad
Follow
ad
タイトルとURLをコピーしました