3Dプリント可能な超高強度アルミ合金を開発(Printable aluminum alloy sets strength records, may enable lighter aircraft parts)

2025-10-07 マサチューセッツ工科大学(MIT)

Web要約 の発言:
MITの研究チームは、機械学習と3Dプリント技術を組み合わせて、従来のアルミ合金より5倍強い新素材を開発した。AIで100万通り以上の組成候補を40種類まで絞り込み、ナノスケールの析出構造を持つ最適合金を特定。レーザー粉末床溶融(LBPF)法で急速冷却することで、高温でも安定した高強度を実現した。新素材はチタン代替として軽量・低コストの航空機部品や高性能ポンプ、自動車、データセンター冷却装置などに応用可能。成果は『Advanced Materials』誌に掲載。

3Dプリント可能な超高強度アルミ合金を開発(Printable aluminum alloy sets strength records, may enable lighter aircraft parts)
A new 3-D-printed aluminum alloy is stronger than traditional aluminum, due to a key recipe that, when printed, produces aluminum (illustrated in brown) with nanometer scale precipitates (in light blue). The precipitates are arranged in regular, nano-scale patterns (blue and green in circle inset) that impart exceptional strength to the printed alloy.
Credit: Felice Frankel

<関連情報>

急速凝固法によって実現した、粗大化耐性ミクロ組織を有する積層造形可能な高強度アルミニウム合金 Additively Manufacturable High-Strength Aluminum Alloys with Coarsening-Resistant Microstructures Achieved via Rapid Solidification

S. Mohadeseh Taheri-Mousavi, Michael Xu, Florian Hengsbach, Clay Houser, Zhaoxuan Ge, Benjamin Glaser, Shaolou Wei, Mirko Schaper, James M. LeBeau …
Advances Materials  Published: 02 October 2025
DOI:https://doi.org/10.1002/adma.202509507

Abstract

Additively manufactured aluminum (Al) alloys with high strength have broad industrial applications. Strength promotion necessitates a high-volume fraction of small, closely spaced precipitates to effectively impede dislocation motion. Here, it is shown that for certain compositions in the Al-Er-Zr-Y-Yb-Ni alloy class, L12-Al3M phases, the primary strength contributor, can initially precipitate as submicron-scale (≈100 nm) metastable ternary phases under the rapid solidification of powder bed additive manufacturing; yet the subsequent coarsening-resistant L12-Al3M phases that precipitate during heat treatment remain at the nanometer scale, imparting high strength. A candidate alloy is designed using hybrid calculation of phase diagrams (CALPHAD)-based integrated computational materials engineering (ICME) and Bayesian optimization algorithms. Powder is manufactured for this alloy and is additively manufactured into crack-free macroscale specimens with a strength that is five-fold that of the equivalent cast alloy and comparable to wrought Al 7075. After aging at 400 °C for 8 h, the room-temperature tensile strength reaches 395 MPa, which is 50% stronger than the best-known benchmark printable Al alloy. This integrated computational-experimental workflow shows the considerable potential to exploit rapid solidification in additive manufacturing to design alloys with commercially deployable properties.

0703金属材料
ad
ad
Follow
ad
タイトルとURLをコピーしました