光ベースの新しい省エネ型生成AIシステムを開発(Sustainable generative AI: UCLA develops novel light-based system)

2025-09-26 カリフォルニア大学ロサンゼルス校(UCLA)

Web要約 の発言:
UCLAサミュエリ工学部の研究チームは、光コンピューティングを活用して従来の数百〜数千回の反復計算を必要とする生成AIを、1回の光処理で実行可能な新システムを開発した。デジタルエンコーダと光デコーダを統合し、手書き数字、ファッション、蝶、人の顔、さらにゴッホ風のアート作品を効率的に生成。従来の拡散モデルと同等の品質を示しつつ、消費エネルギーは大幅に削減された。さらに、異なる光波長と対応するデコーダを用いた「鍵と錠」方式により、不正な画像復元を防ぐセキュリティ機能も搭載。研究者は、この方式が生成AIの環境負荷軽減に寄与し、スマートグラスやAR/VR機器など省電力デバイスでの実装も可能と強調している。

<関連情報>

光学生成モデル Optical generative models

Shiqi Chen,Yuhang Li,Yuntian Wang,Hanlong Chen & Aydogan Ozcan
Nature  Published:27 August 2025
DOI:https://doi.org/10.1038/s41586-025-09446-5

光ベースの新しい省エネ型生成AIシステムを開発(Sustainable generative AI: UCLA develops novel light-based system)

Abstract

Generative models cover various application areas, including image and video synthesis, natural language processing and molecular design, among many others1,2,3,4,5,6,7,8,9,10,11. As digital generative models become larger, scalable inference in a fast and energy-efficient manner becomes a challenge12,13,14. Here we present optical generative models inspired by diffusion models4, where a shallow and fast digital encoder first maps random noise into phase patterns that serve as optical generative seeds for a desired data distribution; a jointly trained free-space-based reconfigurable decoder all-optically processes these generative seeds to create images never seen before following the target data distribution. Except for the illumination power and the random seed generation through a shallow encoder, these optical generative models do not consume computing power during the synthesis of the images. We report the optical generation of monochrome and multicolour images of handwritten digits, fashion products, butterflies, human faces and artworks, following the data distributions of MNIST15, Fashion-MNIST16, Butterflies-10017, Celeb-A datasets18, and Van Gogh’s paintings and drawings19, respectively, achieving an overall performance comparable to digital neural-network-based generative models. To experimentally demonstrate optical generative models, we used visible light to generate images of handwritten digits and fashion products. In addition, we generated Van Gogh-style artworks using both monochrome and multiwavelength illumination. These optical generative models might pave the way for energy-efficient and scalable inference tasks, further exploiting the potentials of optics and photonics for artificial-intelligence-generated content.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました