プラスチックのアップサイクルを加速する新触媒を開発(UD researchers and collaborators develop new catalyst to accelerate upcycling of plastics)

2025-09-22 デラウェア大学(UD)

デラウェア大学主導の研究チームが、新型触媒によってプラスチック廃棄物を液体燃料へ効率的に変換する方法を開発しました。従来のリサイクルは再利用のたびに品質が劣化し、増大する廃棄量に対応できません。一方、新触媒は従来法より短時間で分解を促進し、副生成物を抑えながら高品質の燃料を得ることに成功しました。この成果はChem Catalysis誌に掲載され、エネルギー効率の高いプラスチックのアップサイクリング実現に道を開き、環境負荷低減と持続可能な燃料生産に貢献すると期待されています。

プラスチックのアップサイクルを加速する新触媒を開発(UD researchers and collaborators develop new catalyst to accelerate upcycling of plastics)
An illustration of the chemical structure of the new catalyst. Silica pillars (white with red and yellow balls) open the space between MXene layers (blue) loaded with ruthenium (purple), allowing polymers (grey) to flow more easily.

<関連情報>

調整可能な層間間隔を有する二次元MXene担持ルテニウム触媒によるプラスチック廃棄物の水素分解 Plastic-waste hydrogenolysis over two-dimensional MXene-supported ruthenium catalysts with tunable interlayer spacing

Ali Kamali ∙ Joshua M. Little ∙ Song Luo ∙ … ∙ Po-Yen Chen ∙ Dionisios G. Vlachos ∙ Dongxia Liu
Chem Catalysis  Published:July 15, 2025
DOI:https://doi.org/10.1016/j.checat.2025.101459

The bigger picture

Plastic waste is a pressing global challenge. Chemical upcycling offers a promising pathway for converting it into valuable hydrocarbons. However, conventional catalysts often show low activity as a result of the limited mass transport of bulky polymer chains. This research develops a new class of two-dimensional MXene-supported ruthenium catalyst. The layered MXenes structure confines ruthenium particles within interlayer spaces, enhancing stability and enabling efficient side-face contact with polyethylene chains. Incorporating silica pillars further expands the interlayer spacing, significantly improving mass transport, reaction rates, and selectivity toward liquid fuels. This work highlights the potential of nanostructured catalyst design to enhance plastic upcycling. In the long term, this innovation could enable scalable, energy-efficient technologies for plastic-waste management and have societal benefits ranging from cleaner environments to more sustainable resource use.

Highlights

  • MXene-supported Ru catalysts enhance plastic hydrogenolysis activity
  • SiO2 pillars expand MXene interlayers, improving polymer access and mass transport
  • Ru confined in MXene layers lowers CH4 yield and boosts liquid-fuel selectivity
  • MXene architecture enables control over Ru shape and size for better performance

Summary

The hydrogenolysis of plastics is limited by active-site inaccessibility and inefficient mass transport of bulky polymer chains. To overcome these challenges, this work developed two-dimensional MXene-supported Ru (Ru@MXene) catalysts. Lyophilization of a solution containing dispersed MXene sheets and Ru precursors enabled the confinement of Ru species within the MXene interlayers, which act as pillars to expand the interlayer spacing. Building on this, a silica-pillared MXene-supported Ru (Ru@P-MXene) with even larger interlayer spacing exhibited a reaction rate of 914.9 gC5–C35 gRu−1 h−1 for the hydrogenolysis of low-density polyethylene (LDPE) into valuable liquid chemicals (e.g., C5–C35). A comparison of product yields between Ru@P-MXene and Ru@MXene suggests that elongated Ru particles confined within the MXene support expose their side facets for the reaction. This work demonstrates a new application of MXene in thermochemical catalysis, offering a solution to the challenges of active-site accessibility, mass transport, and reaction confinement in chemical plastic upcycling.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました