AIがサワードウスターターの改良に貢献する可能性(AI could ‘im-prove’ sourdough starters)

2025-09-16 カーディフ大学

Web要約 の発言:
カーディフ大学、山西大学、江南大学の国際研究チームは、サワードウ発酵を標準化し産業的に拡大するために、AIとマルチオミクス、計算モデリングを組み合わせる可能性を示した。サワードウ発酵は乳酸菌や酵母の複雑な微生物群に依存しており、原料や地域、製法によって構成が変動し、風味の多様性を生む一方で産業生産では一貫性や食品安全性の課題となる。研究チームは既存研究をレビューし、AIがマルチオミクスデータを活用して発酵に最も重要な微生物を特定し、異なる条件での相互作用を予測できると指摘。これにより合成微生物群(SynCom)の設計が可能となり、風味や持続可能性を維持しつつ安定した大量生産が期待される。成果は『Trends in Food Science & Technology』に掲載。

AIがサワードウスターターの改良に貢献する可能性(AI could ‘im-prove’ sourdough starters)

<関連情報>

AIとマルチオミクスによるサワードウ発酵の強化:自然の多様性から合成微生物群集へ Enhancing sourdough fermentation with AI and multi-omics: From natural diversity to synthetic microbial community

Yujuan Yu, Jiale Wang, Faizan Ahmed Sadiq, Honghong Cheng, Aowen Liu, Yan Liu, Senmiao Tian, Jingjing Liang, Ling Zhu, Guohua Zhang
Trends in Food Science & Technology  Available online: 14 August 2025
DOI:https://doi.org/10.1016/j.tifs.2025.105233

Highlights

  • Lactic acid bacteria and yeast interactions stabilize sourdough microbial ecosystems and quality.
  • Artificial intelligence and multi-omics optimize microbial interactions in sourdough fermentation.
  • Synthetic microbial communities (SynCom) standardize sourdough, enhancing efficiency, flavor, and health benefits.
  • Genome-scale metabolic models reveal interactions and guide rational design of SynCom for sourdough.

Abstract

Background

Sourdough fermentation is driven by complex microbial consortia shaped by diverse factors, including flour type, environment, and process conditions. Traditional natural sourdough relies on spontaneous microbial colonization from raw materials and the environment, often resulting in high variability in microbial composition, metabolic activity, and fermentation outcomes. These unpredictable dynamics lead to challenges in maintaining product consistency, controlling fermentation time, ensuring food safety, and scaling up production.

Scope and approach

This review outlines how multi-omics approaches could be applied to characterize sourdough microbiota, understand microbial interactions, and monitor metabolic functions. We further explore the transition from natural fermentations to synthetic microbial communities (SynComs), highlighting how the integration of artificial intelligence (AI) and omics can guide SynCom design and predict community behavior under varying fermentation conditions.

Key findings and conclusion

The integration of AI and multi-omics enables in-depth modeling of microbial interactions and functional outputs in sourdough ecosystems. These approaches provide a rational framework to construct functionally stable SynComs for consistent fermentation performance. Although challenges remain in scaling SynComs for industrial application, AI-driven multi-omics strategies represent a promising avenue to optimize sourdough fermentation and foster innovation in fermented food production. Importantly, these findings have broader implications for the development of community models across clinical and industrial microbiology.

1202農芸化学
ad
ad
Follow
ad
タイトルとURLをコピーしました