小惑星リュウグウの岩石は氷を十億年も持っていた!~地球の材料天体に従来見積もりの2〜3倍の水があった可能性~

2025-09-11 東京大学

東京大学らの研究チームは「はやぶさ2」が持ち帰ったリュウグウ試料をルテチウム–ハフニウム同位体で分析し、炭素質小惑星が誕生から10億年以上も氷を保持していた証拠を発見した。氷は母天体への衝突で溶け、水として流出したと考えられる。従来、炭素質小惑星は誕生後数百万年で氷が溶け岩石と反応し含水鉱物を形成したとされてきたが、本研究はその後も氷が存在していたことを示した。これにより、地球の材料天体は含水鉱物に加え氷として水を供給し、その量は従来推定の2~3倍(20~30重量%)に達した可能性がある。地球に供給された水は地球全体の1.2~1.8重量%と見積もられ、海洋質量の60~90倍に相当する。本成果は地球の水の起源と進化を理解する上で重要な知見を与える。

小惑星リュウグウの岩石は氷を十億年も持っていた!~地球の材料天体に従来見積もりの2〜3倍の水があった可能性~
図1:炭素質小惑星リュウグウおよびその母天体の歴史

<関連情報>

リュウグウにおけるルテチウム–ハフニウム同位体による原始的な太陽系小惑星における後期流体の流れの解明 Late fluid flow in a primitive asteroid revealed by Lu–Hf isotopes in Ryugu

Tsuyoshi Iizuka,Takazo Shibuya,Takehito Hayakawa,Tetsuya Yokoyama,Ikshu Gautam,Makiko K. Haba,Kengo T. M. Ito,Yuki Hibiya,Akira Yamaguchi,Yoshinari Abe,Jérôme Aléon,Conel M. O’D. Alexander,Sachiko Amari,Yuri Amelin,Ken-ichi Bajo,Martin Bizzarro,Audrey Bouvier,Richard W. Carlson,Marc Chaussidon,Byeon-Gak Choi,Nicolas Dauphas,Andrew M. Davis,Tommaso Di Rocco,Wataru Fujiya,… Hisayoshi Yurimoto
Nature  Published:10 September 2025
DOI:https://doi.org/10.1038/s41586-025-09483-0

Abstract

Carbonaceous asteroids are the source of the most primitive meteorites1 and represent leftover planetesimals that formed from ice and dust in the outer Solar System and may have delivered volatiles to the terrestrial planets2,3,4,5. Understanding the aqueous activity of asteroids is key to deciphering their thermal, chemical and orbital evolution, with implications for the origin of water on the terrestrial planets. Analyses of the objects, in particular pristine samples returned from asteroid Ryugu, have provided detailed information on fluid–rock interactions within a few million years after parent-body formation6,7,8,9,10,11. However, the long-term fate of asteroidal water remains poorly understood. Here we present evidence for fluid flow in a carbonaceous asteroid more than 1 billion years after formation, based on the 176Lu–176Hf decay systematics of Ryugu samples, which reflect late lutetium mobilization. Such late fluid flow was probably triggered by an impact that generated heat for ice melting and opened rock fractures for fluid migration. This contrasts the early aqueous activity powered by short-lived radioactive decay, with limited fluid flow and little elemental fractionation12. Our results imply that carbonaceous planetesimals accreted by the terrestrial planets could have retained not only hydrous minerals but also aqueous water, leading to an upwards revision of the inventory of their water delivery by a factor of two to three.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました