オブジェクトを超高速で測定する 1 セントよりも小さな新レーザー (New laser smaller than a penny can measure objects at ultrafast rates)

2025-05-30 アメリカ合衆国・ロチェスター大学

ロチェスター大学とUCサンタバーバラの研究チームは、直径1セント硬貨以下のサイズで、超高速かつ高精度な計測を可能にするチップスケールレーザーを開発しました。材料にリチウムナイオベートを用い、ポッケルス効果を活かして光の周波数を10^19 Hz/sの速度で掃引可能とし、波長幅24 GHz・線幅167 Hzという高性能を実現しました。従来、大型装置が必要だった超高速光制御を小型化したことで、FM-CW LiDARによる精密な距離・速度測定や、PDH法を用いたレーザー周波数安定化などの光メトロロジーを、チップ単体で行えるようになります。本成果は、光時計、量子情報処理、重力波検出などの先端分野における光学計測技術を飛躍的に進展させるものであり、次世代フォトニクスデバイスの実用化に直結します。成果は学術誌 Light: Science & Applications に掲載されました。

オブジェクトを超高速で測定する 1 セントよりも小さな新レーザー (New laser smaller than a penny can measure objects at ultrafast rates)
SMALL AND POWERFUL: A new chip-scale laser developed by researchers in the lab of engineering professor Qiang Lin can conduct extremely fast and accurate measurements by very precisely changing its color across a broad spectrum of light at very fast rates. (University of Rochester photo / J. Adam Fenster)

<関連情報>

ポッケルスレーザーによる超高速光学計測の直接駆動 Pockels laser directly driving ultrafast optical metrology

Shixin Xue,Mingxiao Li,Raymond Lopez-rios,Jingwei Ling,Zhengdong Gao,Qili Hu,Tian Qiu,Jeremy Staffa,Lin Chang,Heming Wang,Chao Xiang,John E. Bowers & Qiang Lin
Light: Science & Applications  Published:30 May 2025
DOI:https://doi.org/10.1038/s41377-025-01872-4

Abstract

The invention of the laser unleashed the potential of optical metrology, leading to numerous advancements in modern science and technology. This reliance on lasers, however, also introduces a bottleneck for precision optical metrology, as it requires sophisticated photonic infrastructure for precise laser-wave control, leading to limited metrology performance and significant system complexity. Here, we take a key step toward overcoming this challenge by demonstrating a Pockels laser with multifunctional capabilities that elevate optical metrology to a new level. The chip-scale laser achieves a narrow intrinsic linewidth down to 167 Hz and a broad mode-hop-free tuning range up to 24 GHz. In particular, it delivers an unprecedented frequency chirping rate of up to 20 EHz/s and an exceptional modulation bandwidth exceeding 10 GHz, both of which are orders of magnitude greater than those of existing lasers. Leveraging this laser, we successfully achieve velocimetry at 40 m/s over a short distance of 0.4 m, and measurable velocities up to the first cosmic velocity at 1 m away—a feat unattainable with conventional ranging approaches. At the same time, we achieve distance metrology with a ranging resolution of <2 cm. Furthermore, for the first time to our knowledge, we implement a dramatically simplified architecture for laser frequency stabilization by directly locking the laser to an external reference gas cell without requiring additional external light control. This approach enables long-term laser stability with a frequency fluctuation of only ±6.5 MHz over 60 min. The demonstrated Pockels laser combines elegantly high laser coherence with ultrafast frequency reconfigurability and superior multifunctional capability. We envision its profound impact across diverse fields including communication, sensing, autonomous driving, quantum information processing, and beyond.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました