AIによる大規模なリアルタイム山火事燃料マッピングツール(UCLA researchers unveil AI-powered tool for near real-time, large-scale wildfire fuel mapping)

2025-08-15 カリフォルニア大学ロサンゼルス校(UCLA)

UCLA工学部の研究チームは、野火のリスクを高精度に予測するAIツール「FuelVision」を開発した。これは衛星画像と人工知能を組み合わせ、森林や草地など可燃物の分布をリアルタイムにマッピングするもので、現地調査を必要とせず全米規模に適用可能である。2021年のカリフォルニア州ディクシー火災とカルドール火災のデータで検証したところ、実際の被害マップと一致し、精度は77%に達した。FuelVisionは、Landsatによる光学データ、SentinelやPALSARによるSARデータ、さらに地形情報を統合し、深層学習や勾配ブースティングなど複数手法を組み合わせたアンサンブルモデルで解析する。学習データ不足はGANを用いた擬似データ生成で補完した。利用者はPythonベースのインターフェースで燃料マップを生成でき、将来的にはオンデマンドでのサービス提供も予定されている。本成果は、従来の国家レベルの更新頻度の低い地図を補完し、緊急対応や長期的な森林火災対策における有力な支援ツールとなる。

AIによる大規模なリアルタイム山火事燃料マッピングツール(UCLA researchers unveil AI-powered tool for near real-time, large-scale wildfire fuel mapping)
Riyaaz Shaik and Patrick Hadinata/UCLA
Fuels map of the 2025 Eaton Fire, as predicted by FuelVision.

<関連情報>

FUELVISION:山火事燃料マッピングのためのマルチモーダルデータ融合とマルチモデルアンサンブルアルゴリズム FUELVISION: A multimodal data fusion and multimodel ensemble algorithm for wildfire fuels mapping

Riyaaz Uddien Shaik, Mohamad Alipour, Eric Rowell, Bharathan Balaji, Adam Watts, Ertugrul Taciroglu
International Journal of Applied Earth Observation and Geoinformation  Available online: 12 March 2025
DOI:https://doi.org/10.1016/j.jag.2025.104436

Highlights

  • Near real-time wildland fuels mapping algorithm.
  • Leverage satellite remote sensing data and terrain features.
  • Overcome challenge posed by imbalanced datasets.
  • Leverage General Adversarial Networks for synthetic remote sensing data generation.

Abstract

Accurate assessment of fuel conditions is a prerequisite for fire ignition and behavior prediction, and risk management. The method proposed herein leverages diverse data sources – including L8 optical imagery, S1 (C-band) Synthetic Aperture Radar (SAR) imagery, PL (L-band) SAR imagery, and terrain features – to capture comprehensive information about fuel types and distributions. An ensemble model was trained to predict landscape-scale fuels – such as the ’Scott and Burgan 40’ – using the as-received Forest Inventory and Analysis (FIA) field survey plot data obtained from the USDA Forest Service. However, this basic approach yielded relatively poor results due to the inadequate amount of training data. Pseudo-labeled and fully synthetic datasets were developed using generative AI approaches to address the limitations of ground truth data availability. These synthetic datasets were used for augmenting the FIA data from California to enhance the robustness and coverage of model training. The use of an ensemble of methods – including deep learning neural networks, decision trees, and gradient boosting – offered a fuel mapping accuracy of nearly 80%. Through extensive experimentation and evaluation, the effectiveness of the proposed approach was validated for regions of the 2021 Dixie and Caldor fires. Comparative analyses against high-resolution data from the National Agriculture Imagery Program (NAIP) and timber harvest maps affirmed the robustness and reliability of the proposed approach, which is capable of near-real-time fuel mapping.

1304森林環境
ad
ad
Follow
ad
タイトルとURLをコピーしました