AI搭載空中ロボットによる森林火災煙の追跡と解析(AI-equipped aerial robots help to track and model wildfire smoke)

2025-08-06 ミネソタ大学

ミネソタ大学の研究チームは、AIとホログラフィーを搭載したドローンを開発し、山火事の煙に含まれる微粒子を空中で直接観測・解析することに成功した。ドローンは粒子の形状や動態をリアルタイムで捉え、AIによって分類・追跡する。これにより従来より高精度な煙の拡散モデルが可能となり、気候影響や健康リスクの評価に貢献する。将来的には、複数機による応用や他分野への展開も期待されている。

AI搭載空中ロボットによる森林火災煙の追跡と解析(AI-equipped aerial robots help to track and model wildfire smoke)
Using autonomous drones, researchers are able to create a 3D reconstruction of the smoke plume and improve analysis of flow patterns. Photo Credit: Jiarong Hong Lab

<関連情報>

多視点ドローン群を用いた煙の拡散の3次元特性化 3D characterization of smoke plume dispersion using multi-view drone swarm

Nikil Krishnakumar, Shashank Sharma, Srijan Kumar Pal, Jiarong Hong
Science of The Total Environment  Available online: 29 April 2025
DOI:https://doi.org/10.1016/j.scitotenv.2025.179466

Highlights

  • Autonomous drone swarm for 3D high resolution measurements of smoke plume dispersion
  • Dynamic multiview imaging via coordinated swarm of one manager and four worker drones
  • Integration of deep learning tools for 3D plume reconstruction in complex environment
  • Field validation reveals plume volume, direction, shape with second-level detail
  • Versatile platform for fire modeling, air-quality monitoring, and disaster response

Abstract

This study presents an advanced multi-view drone swarm imaging system for the three-dimensional characterization of smoke plume dispersion dynamics. The system comprises a manager drone and four worker drones, each equipped with high-resolution cameras and precise GPS modules. The manager drone uses image feedback to autonomously detect and position itself above the plume, then commands the worker drones to orbit the area in a synchronized circular flight pattern, capturing multi-angle images. The camera poses of these images are first estimated, then the images are grouped in batches and processed using Neural Radiance Fields (NeRF) to generate high-resolution 3D reconstructions of plume dynamics over time. Field tests demonstrated the system’s ability to capture critical plume characteristics including volume dynamics, wind-driven directional shifts, and lofting behavior at a temporal resolution of about 1 s. The 3D reconstructions generated by this system provide unique field data for enhancing the predictive models of smoke plume dispersion and fire spread. Broadly, the drone swarm system offer a versatile platform for high resolution measurements of pollutant emissions and transport in wildfires, volcanic eruptions, prescribed burns, and industrial processes, ultimately supporting more effective fire control decisions and mitigating wildfire risks.

1603情報システム・データ工学
ad
ad
Follow
ad
タイトルとURLをコピーしました