藻類を活用した次世代プラスチックの開発(From pond to polymer: Algae powers next generation plastics)

ad

2025-08-05 バージニア工科大学 (Virginia Tech)

バージニア工科大学の研究チームが、藻類を原料とした新たな生分解性プラスチックの合成法を開発。微細藻類を全細胞のまま用い、化学成分と組み合わせることで、持続可能かつ石油由来プラスチックに匹敵する性能を実現。包装材などへの応用が期待される。食料と競合せず、再生可能で環境負荷の少ない資源活用が特徴。本手法は低コストかつスケーラブルで、次世代の環境対応型素材として注目されている。

<関連情報>

全バイオマスを用いた機械化学的合成による再利用可能なバイオハイブリッドポリマーネットワークの合成 Mechanochemical Synthesis of Recyclable Biohybrid Polymer Networks Using Whole Biomass

Meng Jiang, Emily Bird, Woojung Ham, Joshua C. Worch
Angewandte Chemie International Edition  Published: 13 July 2025
DOI:https://doi.org/10.1002/anie.202510449

Graphical Abstract

A novel mechanochemical method is developed to transform raw biomass, such as whole-cell algae, into strong and ductile plastics by combining it with synthetic components. These biohybrid materials can be adapted, remolded, or depolymerized over multiple cycles due to the underlying dynamic covalent polymer network.

藻類を活用した次世代プラスチックの開発(From pond to polymer: Algae powers next generation plastics)

Abstract

Whole-plant biomass from non-agricultural sources and waste biomass from processing agricultural products are both promising feedstocks for biopolymer production because they are abundant and do not compete with food production. However, their processing steps are notoriously tedious with the final materials often displaying inferior performance and limited scope in their properties. Here, we report a strategy to integrate whole-cell spirulina, a green-blue algae, into robust biohybrid algae-polyimine networks by leveraging a mechanochemical ball milling method. This strategy provides a greener synthetic approach to conventional solvent casting methods for polyimine synthesis; it simultaneously overcomes persistent constraints encountered in biomass processing and derivatization. The biohybrid algae-based materials retain adaptability and recyclability imparted by their underlying dynamic covalent polymer matrix and display enhanced mechanical properties compared to their all-synthetic equivalents. These advantageous properties are attributed to the unique morphology of the ball milled biohybrid materials which are facilitated by integration of the spirulina into the polymer matrix. Substituting spirulina with alternative biomass sources such as waste agricultural products also yields robust biohybrid networks, thus highlighting the broad utility of this straightforward mechanochemical synthesis to create more sustainable materials.

0504高分子製品
ad
ad
Follow
ad
タイトルとURLをコピーしました