極端現象と気候変動の関係を迅速に推定する新手法の開発~統計的アプローチによる新しいイベント・アトリビューション~

ad

2025-07-10 東京大学,気象研究所,(一財)気象業務支援センター,京都大学

東京大学や気象研究所などの研究チームは、極端気象と気候変動の関係を迅速に評価する新たな統計手法を開発しました。この手法は、観測された海面水温や大気データをもとに、極端現象(例:猛暑)の発生確率と人為的影響を数日以内に推定可能にするもので、従来の1~2か月を要する方法に比べて大幅に高速化。実際の熱波事例に適用した結果、精度も既存手法と同等であることが確認されました。今後は大雨など他の現象にも応用予定です。

極端現象と気候変動の関係を迅速に推定する新手法の開発~統計的アプローチによる新しいイベント・アトリビューション~
新しい統計的手法に基づく迅速なイベント・アトリビューションの模式図
海面水温パターンは一例であり、イベントにより異なります。

<関連情報>

極端事象の発生確率に対する迅速な事象帰属の新しい統計的手法:日本の熱波事象への応用 A new statistical method of rapid event attribution for probability of extreme events: applications to heatwave events in Japan

Chiharu Takahashi, Yukiko Imada, Hiroaki Kawase and Tomohiro Tanaka
Environmental Research: Climate  Published: 10 July 2025
DOI:10.1088/2752-5295/ade1f3

Abstract

We have developed a new statistical method of rapid event attribution (EA) that can immediately estimate the probability of a specific extreme event and attribute it to long-term climate change including anthropogenic global warming by using existing long-term large ensemble (LE) climate simulations with an atmospheric general circulation model and observational data. This paper describes the new EA method with the example of summer heat waves that have occurred in Japan. The probability distribution functions of the temperature over Japan are well approximated with the Gaussian (Gauss) distribution or the generalized extreme value distribution. We propose the new methodology to estimate parameters of a distribution function as a function of global sea surface temperature (SST) anomalies or equivalent atmospheric variables under factual climate conditions and counterfactual non-warming climate conditions using a regression model, which enables us to incorporate the influence of underlying oceanic natural variability into the EA system. The key points of our method are that (1) it is based on findings that the location, scale, and shape parameters of the probability density function of temperature in Japan are closely linked to the primary modes of internal variability in the atmosphere and ocean, (2) changes in these parameters induced by the anthropogenic climate change can also be reconstructed from the trend patterns of the SST and (3) considering atmospheric forced responses to SST variations in the statistical relationship improves the estimation accuracy. We confirmed that this approach can successfully estimate the probability of several past extreme temperature events in Japan under the factual and counterfactual climate conditions which is comparable to the estimation of conventional LE method. This new rapid EA method will be applicable to other types of extreme events and to events all over the world.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました