計算トリックがエキゾチックな物質状態の理解を深める(Computational trick enables better understanding of exotic state of matter)

ad

2025-06-25 ローレンスリバモア国立研究所(LLNL)

計算トリックがエキゾチックな物質状態の理解を深める(Computational trick enables better understanding of exotic state of matter)Schematic illustration of the experimental setup. A beryllium capsule (yellow) is compressed, heated and probed by an X-ray source (pink). The scattered photons (purple) are collected by a detector (black). The green dots represent the beryllium ions and the blue-red clouds their electrons. (Credit: T. Dornheim et al.)

ローレンス・リバモア国立研究所(LLNL)とドイツHZDRの研究チームは、極限状態の物質「温かく高密度な物質(WDM)」の性質を高精度で解析可能にする新たな計算手法を開発しました。量子モンテカルロ法の「符号問題」を、仮想的な統計操作により緩和することで、ベリリウムなどの実材料を用いたシミュレーションが可能となり、NIFでの実験データとも一致。この手法は、核融合研究や惑星内部構造の理解に貢献する可能性があり、物理・材料科学の発展に資すると期待されています。

<関連情報>

高密度量子プラズマにおける電子相関の解明 Unraveling electronic correlations in warm dense quantum plasmas

Tobias Dornheim,Tilo Döppner,Panagiotis Tolias,Maximilian P. Böhme,Luke B. Fletcher,Thomas Gawne,Frank R. Graziani,Dominik Kraus,Michael J. MacDonald,Zhandos A. Moldabekov,Sebastian Schwalbe,Dirk O. Gericke & Jan Vorberger
Nature Communications  Published:02 June 2025
DOI:https://doi.org/10.1038/s41467-025-60278-3

Abstract

The study of matter at extreme densities and temperatures has emerged as a highly active frontier at the interface of plasma physics, material science and quantum chemistry with relevance for planetary modeling and inertial confinement fusion. A particular feature of such warm dense matter is the complex interplay of Coulomb interactions, quantum effects, and thermal excitations, making its rigorous theoretical description challenging. Here, we demonstrate how ab initio path integral Monte Carlo simulations allow us to unravel this intricate interplay for the example of strongly compressed beryllium, focusing on two X-ray Thomson scattering data sets obtained at the National Ignition Facility. We find excellent agreement between simulation and experiment with a very high level of consistency between independent observations without the need for any empirical input parameters. Our results call into question previously used chemical models, with important implications for the interpretation of scattering experiments and radiation hydrodynamics simulations.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました