宇宙船修理支援用バーチャルアシスタントの開発(Hey Siri, Fix My Spacecraft!)

ad

2025-06-30 テキサスA&M大学

宇宙船修理支援用バーチャルアシスタントの開発(Hey Siri, Fix My Spacecraft!)A new virtual assistant developed at Texas A&M is designed to support astronauts during deep space missions by diagnosing problems and guiding solutions in real time. Credit: Rachel Barton/Texas A&M Engineering

テキサスA&M大学の研究チームは、通信不能な宇宙環境で船内異常に対応するAI仮想アシスタント「Daphne-AT」を開発した。酸素やCO₂などの環境データをリアルタイム監視し、異常時には原因を推定して乗員に対処法を提示する。VR実験では対応速度と精神的負荷の軽減効果が確認され、将来的には消防や災害救助など地上の緊急現場でも活用が期待されている。論文はJournal of Aerospace Information Systemsに掲載。

<関連情報>

宇宙船の異常解決のためのバーチャルアシスタント: 人間のパフォーマンス指標への影響 Virtual Assistant for Spacecraft Anomaly Resolution: Effects on Human Performance Metrics

Poonampreet Kaur Josan, Prachi Dutta, Renee Abbott, Antoni Viros Martin, Bonnie J. Dunbar, Raymond K.W. Wong, Daniel Selva and Ana Diaz-Artiles
The Journal of Aerospace Information Systems  Published:3 Jan 2025
DOI:https://doi.org/10.2514/1.I011449

Abstract

Virtual assistants (VAs) are known to improve performance, reduce mental workload (MWL), and improve situational awareness (SA) in complex cognitive tasks. However, there is a lack of studies focusing on anomaly resolution tasks in time- and safety-critical environments such as long-duration exploration missions. This paper aims to investigate the effects of using a VA, namely Daphne-AT, on crew performance, SA, and MWL in the context of spacecraft anomaly treatment. Participants (=12<?XML:NAMESPACE PREFIX = “[default] http://www.w3.org/1998/Math/MathML” NS = “http://www.w3.org/1998/Math/MathML” />n=12) were tasked to detect, diagnose, and resolve anomalies in two different but equivalent experimental sessions (five anomalies with the VA and five anomalies without the VA). In each condition, performance was quantified based on the number of anomalies correctly resolved and the total time needed to resolve the anomalies. SA and MWL were quantified using the Situational Awareness Rating Technique and the NASA Task Load index. Results indicate that participants resolved more anomalies in less time during sessions with VA. MWL reduced significantly during sessions with VA. Although total SA did not significantly change between VA conditions, the subscales attentional demand and understanding improved with VA. These findings suggest that VAs are promising decision support tools for anomaly resolution in domains such as spaceflight, aviation, or emergency response.

0301機体システム
ad
ad
Follow
ad
タイトルとURLをコピーしました