脳構造に着想を得たAIが20%効率向上(Brain-Inspired AI Breakthrough Spotlighted at Global Conference)

ad

2025-06-26 ジョージア工科大学

脳構造に着想を得たAIが20%効率向上(Brain-Inspired AI Breakthrough Spotlighted at Global Conference)

Neurons growing in a culture dish (NASA)

ジョージア工科大学の研究チームは、人間の脳構造に似た内部構造を自律的に形成するAIアルゴリズムを開発し、処理効率を約20%向上させることに成功した。従来のニューラルネットワークと異なり、この手法は階層的かつ最適化された構造を自己形成し、高い認識能力とエネルギー効率を実現する。研究成果は国際会議で注目を集めており、画像認識や自然言語処理、ロボティクスなど幅広い応用が期待される。

<関連情報>

TopoNets:脳のようなトポグラフィを持つ高性能な視覚・言語モデル TopoNets: High performing vision and language models with brain-like topography

Mayukh_Deb, Mainak Deb, Apurva Ratan Murty

International Conference on Learning Representations (ICLR)  Published: 23 Jan 2025

Abstract:

Neurons in the brain are organized such that nearby cells tend to share similar functions. AI models lack this organization, and past efforts to introduce topography have often led to trade-offs between topography and task performance. In this work, we present TopoLoss, a new loss function that promotes spatially organized topographic representations in AI models without significantly sacrificing task performance. TopoLoss is highly adaptable and can be seamlessly integrated into the training of leading model architectures. We validate our method on both vision (ResNet-18, ResNet-50, ViT) and language models (GPT-Neo-125M, NanoGPT), collectively TopoNets. TopoNets are the highest performing supervised topographic models to date, exhibiting brain-like properties such as localized feature processing, lower dimensionality, and increased efficiency. TopoNets also predict responses in the brain and replicate the key topographic signatures observed in the brain’s visual and language cortices, further bridging the gap between biological and artificial systems. This work establishes a robust and generalizable framework for integrating topography into AI, advancing the development of high performing models that more closely emulate the computational strategies of the human brain. Our project page: https://toponets.github.io

1602ソフトウェア工学
ad
ad
Follow
ad
タイトルとURLをコピーしました