機械学習により溶融塩の挙動を量子精度で予測(Quantum precision reached in modeling molten salt behavior)

ad

2025-06-24 オークリッジ国立研究所(ORNL)

機械学習により溶融塩の挙動を量子精度で予測(Quantum precision reached in modeling molten salt behavior)
The melting point of lithium chloride can be accurately predicted from simulations by converting liquid salt into a gas (top) and solid crystal into a network of springs (bottom). Credit: Luke Gibson/ORNL, U.S. Dept. of Energy

米・オークリッジ国立研究所(ORNL)の研究チームは、機械学習と量子化学を組み合わせた手法で、溶融塩の熱物性を量子レベルの精度で高速に予測することに成功した。従来の第一原理計算に比べて1000倍以上高速かつ高精度で、ナトリウム・塩化ナトリウム混合塩やLiClの融点などを正確に再現。開発されたニューラルネットワーク型ポテンシャルモデル(NNIP)は、次世代原子炉設計に不可欠な高温材料の安定性・腐食性評価などに大きく貢献する技術として期待される。

<関連情報>

機械学習による高速シミュレーションで化学ポテンシャルを計算し、溶融塩の熱力学的特性を正確に予測する Computing chemical potentials with machine-learning-accelerated simulations to accurately predict thermodynamic properties of molten salts

Luke D. Gibson,Rajni Chahal and  Vyacheslav S. Bryantsev
Chemical Science  Published:24 Jan 2025
DOI:https://doi.org/10.1039/D4SC07253G

Abstract

The successful design and deployment of next-generation nuclear technologies heavily rely on thermodynamic data for relevant molten salt systems. However, the lack of accurate force fields and efficient methods has limited the quality of thermodynamic predictions from atomistic simulations. Here we propose an efficient free energy framework for computing chemical potentials, which is the central free energy quantity behind many thermodynamic properties. We accelerate our simulations without sacrificing accuracy by using machine learning interatomic potentials trained on density functional theory (DFT) data. Using lithium chloride as our model system, we compute chemical potentials with DFT-accuracy for solid and liquid phases by transmuting ions into noninteracting particles. Notably, in the liquid phase, we demonstrate consistency whether we transmute one ion pair or the entire system into ideal gas particles. By locating the temperature where the chemical potential of solid and liquid phases cross, we predict a melting point of 880 ± 18 K for lithium chloride, which is remarkably close to the experimental value of 883 K. With this successful demonstration, we lay the foundation for high-throughput thermodynamic predictions of many properties that can be derived from the chemical potentials of the minority and majority components in molten salts.

0500化学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました