新しい磁気的挙動を示す金属酸化物を発見(New material behavior to improve speed and efficiency of technology)

ad

2025-06-12 ミネソタ大学

ミネソタ大学の研究チームは、非磁性材料RuO₂の極薄膜に歪を与えることで、新たな磁性「アロターマグネット」状態を誘導し、磁場なしで異常ホール効果を実現しました。これは次世代スピントロニクスや量子コンピューティングに応用可能な画期的成果であり、省電力・高性能デバイス開発に貢献すると期待されています。今後、構造制御による磁性強化研究が進められます。

<関連情報>

エピタキシャル歪みRuO2薄膜における金属性と異常ホール効果 Metallicity and anomalous Hall effect in epitaxially strained, atomically thin RuO2 films

Seung Gyo Jeong, Seungjun Lee, Bonnie Lin, +13 , and Bharat Jalan
Proceedings of the National Academy of Sciences  Published:June 11, 2025
DOI:https://doi.org/10.1073/pnas.2500831122

Significance

Materials challenges frequently constrain fundamental discoveries and the development of breakthrough technologies, underscoring the pivotal role of high‐quality synthesis in overcoming such barriers. Using hybrid molecular beam epitaxy, we demonstrate precise control over composition, thickness, and epitaxial strain in RuO2 thin films, preserving metallicity and stabilizing magnetism down to unit cell level. We observed a robust anomalous Hall effect, revealing the emergence of strain-engineered magnetic states, supported by density functional theory calculations. By pinpointing epitaxial strain as the origin of magnetism in RuO2 thin films, this work resolves recent debates and illustrates how atomic-scale synthesis and strain engineering can unlock intriguing quantum states and advance the design of functional materials for next-generation spintronics and quantum technologies.

Abstract

The anomalous Hall effect (AHE), a hallmark of time-reversal symmetry breaking, has been reported in rutile RuO2, a debated metallic altermagnetic candidate. Previously, AHE in RuO2 was observed only in strain-relaxed thick films under extremely high magnetic fields (~50 T). Yet, in ultrathin strained films with distinctive anisotropic electronic structures, there are no reports, likely due to disorder and defects suppressing metallicity thus hindering its detection. Here, we demonstrate that ultrathin, fully strained 2 nm TiO2/t nm RuO2/TiO2 (110) heterostructures, grown by hybrid molecular beam epitaxy, retain metallicity and exhibit a sizeable AHE at a significantly lower magnetic field (< 9 T). Density functional theory calculations reveal that epitaxial strain stabilizes a noncompensated magnetic ground state and reconfigures magnetic ordering in RuO2 (110) thin films. These findings establish ultrathin RuO2 as a platform for strain-engineered magnetism and underscore the transformative potential of epitaxial design in advancing spintronic technologies.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました