気候ティッピングは予測可能か?~データ同化の数理で探る気候変動の転換点の予測可能性~

ad

2025-06-11 東京大学

東京大学大学院(久保亘修士・澤田洋平准教授)の研究グループは、気候変動による不可逆的変化「気候ティッピング」の予測可能性を初めて定量評価する手法を開発しました。データ同化を用いた観測システムシミュレーション実験により、アマゾン熱帯雨林の大量枯死や大西洋熱塩循環の停止が予測可能であると判明しました。シグナルノイズ比が1を超える精度の高い観測データが必要であることも示されました。本研究は、「そもそも気候ティッピングは予測可能か?」という根源的問いに答え、高精度観測データの重要性を数学的に示す初の試みです。今後、この手法を活用し、気候リスクを踏まえた緩和・適応策の科学的策定につなげることが期待されます。成果は論文誌 Geophysical Research Letters に掲載されました(DOI:10.1029/2024GL113146)。

気候ティッピングは予測可能か?~データ同化の数理で探る気候変動の転換点の予測可能性~
温暖化の進行に伴い地球システムはこれまでとは全く違う均衡状態に落ちてしまうかもしれない。これを予測することは可能か?

<関連情報>

地球システムの内部変動に着目した気候転換の予測可能性 Predictability of Climate Tipping Focusing on Internal Variability in the Earth System

Amane Kubo, Yohei Sawada
Geophysical Research Letters  Published: 10 June 2025
DOI:https://doi.org/10.1029/2024GL113146

Abstract

Despite many efforts to predict the existence and timing of climate tipping under specific climate scenarios, the practical predictability of climate tipping, the necessary conditions under which climate tipping can be predicted, has yet to be explored. Here we examine the predictability of climate tipping using an Observing System Simulation Experiment (OSSE), in which the value of observation for prediction is assessed through idealized data assimilation experiments. A simplified dynamic vegetation model and an Atlantic Meridional Overturning Circulation two-box model are used for the OSSE. We find that the ratio of internal variability to observation error, or signal-to-noise ratio, should be large enough to resolve internal variability; observations with a large signal-to-noise ratio can help improve model-based prediction of climate tipping. The simple heuristic scaling based on our results implies that existing observation networks may not be precise enough to predict climate tipping.

Key Points

  • We discuss the practical predictability of climate tipping for the first time
  • Precise observation with no direct records of climate tipping will help improve process-based models’ prediction of climate tipping
  • Our estimation implies that observations with a high signal-to-noise ratio are effective to improve model prediction of climate tipping

Plain Language Summary

Climate tipping is a critical and irreversible change in the Earth system, which can potentially be induced by anthropogenic global warming. Climate tipping is feared to have a substantial impact on society. To mitigate this impact, it is important to know whether it will occur and, if it does, to predict it as far in advance as possible. However, precise records of climate tipping are not available, since the last climate tipping occurred before the modern era, which makes it difficult to predict climate tipping. Although many previous works used computer simulations to predict the existence and timing of climate tipping, it has yet to be clarified how observation data can contribute to these computer simulation-based assessments of climate tipping. Here we examine the predictability of climate tipping by identifying what kinds of observation data are necessary to improve the computer simulation of climate tipping. The ratio of year-to-year variability to observation error should be large enough to accurately predict climate tipping. Our results imply that existing observation networks may not be always sufficient to accurately project climate tipping.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました