AIに基礎教育を施すことで複雑なタスクへの学習を向上(Researchers Take AI to “Kindergarten” in Order to Learn More Complex Tasks)

ad

2025-05-19 ニューヨーク大学

ニューヨーク大学(NYU)の研究チームは、AIエージェントが複雑なタスクを効果的に学習するためには、まず「幼稚園レベル」の基本的なスキルを習得する必要があることを示しました。このアプローチでは、AIが単純なタスクから始めて段階的に難易度を上げることで、より高度な問題解決能力を獲得できるとされています。研究者のSavin氏は、「AIエージェントは、複雑なタスクをよりよく学習するために、まず幼稚園を経る必要がある」と述べています。

<関連情報>

複雑なタスクにおける動物の行動と計算効率を改善する構成的事前訓練 Compositional pretraining improves computational efficiency and matches animal behaviour on complex tasks

David Hocker,Christine M. Constantinople & Cristina Savin
Nature Machine Intelligence  Published:19 May 2025
DOI:https://doi.org/10.1038/s42256-025-01029-3

A preprint version of the article is available at bioRxiv.

AIに基礎教育を施すことで複雑なタスクへの学習を向上(Researchers Take AI to “Kindergarten” in Order to Learn More Complex Tasks)

Abstract

Recurrent neural networks (RNNs) are ubiquitously used in neuroscience to capture both neural dynamics and behaviours of living systems. However, when it comes to complex cognitive tasks, training RNNs with traditional methods can prove difficult and fall short of capturing crucial aspects of animal behaviour. Here we propose a principled approach for identifying and incorporating compositional tasks as part of RNN training. Taking as the target a temporal wagering task previously studied in rats, we design a pretraining curriculum of simpler cognitive tasks that reflect relevant subcomputations, which we term ‘kindergarten curriculum learning’. We show that this pretraining substantially improves learning efficacy and is critical for RNNs to adopt similar strategies as rats, including long-timescale inference of latent states, which conventional pretraining approaches fail to capture. Mechanistically, our pretraining supports the development of slow dynamical systems features needed for implementing both inference and value-based decision making. Overall, our approach helps endow RNNs with relevant inductive biases, which is important when modelling complex behaviours that rely on multiple cognitive functions.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました