VR内の魚がロボットに群れ行動を教える(In VR school, fish teach robots)

ad

2025-04-30 マックス・プランク研究所

VR内の魚がロボットに群れ行動を教える(In VR school, fish teach robots)The matrix for fish: Researchers placed individual zebrafish into networked virtual reality arenas where each fish could freely interact with ‘holographic’ virtual conspecifics. © Christian Ziegler, Liang Li and Máté Nagy

マックス・プランク動物行動研究所の研究チームは、魚の群れ行動を模倣するロボット制御法を開発しました。彼らは仮想現実(VR)環境でゼブラフィッシュを観察し、魚が他個体の位置情報だけを基に動きを調整する「自然の制御則」を発見しました。このシンプルなアルゴリズムを自動車、ドローン、ボートなどのロボット群に適用したところ、既存の高度な制御法と同等の性能を示しながら、計算コストを大幅に削減できました。この研究は、生物の進化的知見がロボット工学に革新をもたらす可能性を示しています。

<関連情報>

仮想現実を用いたゼブラフィッシュの群れ行動の制御法則のリバースエンジニアリング Reverse engineering the control law for schooling in zebrafish using virtual reality

Liang Li, Máté Nagy, Guy Amichay, Ruiheng Wu, […] , and Iain D. Couzin
Science Robotics  Published:30 Apr 2025
DOI:https://doi.org/10.1126/scirobotics.adq6784

Abstract

Revealing the evolved mechanisms that give rise to collective behavior is a central objective in the study of cellular and organismal systems. In addition, understanding the algorithmic basis of social interactions in a causal and quantitative way offers an important foundation for subsequently quantifying social deficits. Here, with virtual reality technology, we used virtual robot fish to reverse engineer the sensory-motor control of social response during schooling in a vertebrate model: juvenile zebrafish (Danio rerio). In addition to providing a highly controlled means to understand how zebrafish translate visual input into movement decisions, networking our systems allowed real fish to swim and interact together in the same virtual world. Thus, we were able to directly test models of social interactions in situ. A key feature of social response is shown to be single- and multitarget-oriented pursuit. This is based on an egocentric representation of the positional information of conspecifics and is highly robust to incomplete sensory input. We demonstrated, including with a Turing test and a scalability test for pursuit behavior, that all key features of this behavior are accounted for by individuals following a simple experimentally derived proportional derivative control law, which we termed “BioPD.” Because target pursuit is key to effective control of autonomous vehicles, we evaluated—as a proof of principle—the potential use of this simple evolved control law for human-engineered systems. In doing so, we found close-to-optimal pursuit performance in autonomous vehicle (terrestrial, airborne, and watercraft) pursuit while requiring limited system-specific tuning or optimization.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました