2024年能登半島地震の起こり方は活断層の「かたち」に支配されていた~シミュレーションにより大地震の特徴を事前に把握できる可能性~

ad

2025-04-29 東京大学

東京大学、東北大学、産総研の研究チームは、2024年能登半島地震の断層滑りと地殻隆起が、海底活断層の三次元的な形状に強く影響されていたことを明らかにしました。地震前に得られた観測データに基づき、断層形状と応力場を考慮した動的破壊シミュレーションを実施し、実際の地震で観測された地表変形や地震動の再現に成功しました。特に断層が屈曲する箇所で滑りが大きくなり、破壊が加速したことが判明。この成果は、大地震の特徴を事前に予測し、防災・減災に活用する新たな可能性を示しています。

2024年能登半島地震の起こり方は活断層の「かたち」に支配されていた~シミュレーションにより大地震の特徴を事前に把握できる可能性~
2024年能登半島地震を発生させた活断層の「かたち」と各地での隆起量の違い

<関連情報>

Mw7.5の能登半島地震から得られた証拠:非平面3次元断層形状はすべりおよび隆起の時空間分布を制御する Nonplanar 3D fault geometry controls the spatiotemporal distributions of slip and uplift: evidence from the Mw 7.5 2024 Noto Peninsula, Japan, Earthquake

Ryosuke Ando,Yo Fukushima,Keisuke Yoshida & Kazutoshi Imanishi
Earth, Planets and Space  Published:29 April 2025
DOI:https://doi.org/10.1186/s40623-025-02187-9

Abstract

The 2024 Mw 7.5 Noto Peninsula Earthquake broke through a previously documented active fault system over 150 km in the northern central Japanese Island. This fault system is characterized by geometrical complexity. It is important to understand the physical mechanism underlying the multi-fault rupture. We conduct fully dynamic rupture simulations and identify that the 3D fault geometry controls the observed rupture process and heterogeneous spatiotemporal patterns of the fault slip, seismic radiation and crustal deformation exhibiting about five meters of the maximum uplift. Aiming to examine the effect of the 3D fault geometry, we exclude the heterogeneity arising from the frictional properties. We also avoid retrospective frictional parameter tunings to fit the coseismic observations to test whether it is possible for our forward modeling to reproduce the coseismic observations. The 3D nonplanar geometry model is built based on the previously documented surface fault traces, and we use the regional stress field determined by the stress tensor inversion. As a result, the dynamic rupture simulation reasonably reproduces the observed characteristics of the heterogeneous deformation patterns. We find the rupture is accelerated, and slip is increased, where the fault is bent and optimally oriented to the regional stress orientations. Remarkably, the spatial distribution of surface displacement captured by the Synthetic Aperture Radar imageries is quantitatively reproduced, as characterized by two areas of large and small peaks of uplifts. Our findings may contribute to better constraining future earthquake rupture scenarios.

1702地球物理及び地球化学
ad
ad
Follow
ad
タイトルとURLをコピーしました