水の酸化触媒活性を高める新戦略を開発(Scientists Develop Novel Strategy to Enhance Water Oxidation Catalysis)

ad

2025-04-29 中国科学院(CAS)

水の酸化触媒活性を高める新戦略を開発(Scientists Develop Novel Strategy to Enhance Water Oxidation Catalysis)(A–C) Catalytic activity and operational stability of the MOF@POM superstructure under practical conditions. (Image by YAN Ya)

中国科学院上海硅酸塩研究所を中心とする研究チームは、Ni架橋ポリオキソメタレート(POM)上にCoFe金属有機構造体(MOF)をグラフト化したMOF@POM超構造を開発し、産業レベルの高電流密度下でも高効率かつ安定な水酸化触媒を実現しました。この構造は、CoFe-MOFが水酸化条件で単層のCoFe層状二重水酸化物(LDH)に変化し、Ni–O橋でPOMと共有結合することで高性能を発揮。10 mA/cm²で178 mVの過電圧、80°Cでは3 A/cm²を1.78 Vで達成し、米国エネルギー省の目標を超える成果を示しました。長時間安定運転も実現し、次世代高性能触媒の設計に貢献します。

<関連情報>

ポリオキソメタル化された有機金属骨格の超構造が安定した水の酸化を可能にする Polyoxometalated metal-organic framework superstructure for stable water oxidation

Kaihang Yue, Ruihu Lu, Mingbin Gao, Fei Song, […] , and Ya Yan
Science  Published:24 Apr 2025
DOI:https://doi.org/10.1126/science.ads1466

Editor’s summary

Splitting water electrochemically is an appealing method for sustainable and environmentally friendly hydrogen production. However, current catalysts still lack the stability and activity to cost-effectively scale the process for the envisioned applications. Yue et al. report an earth-abundant multimetallic catalyst for the oxygen evolution side that exhibits high stability under alkaline conditions. The catalyst assembly combines an iron and cobalt metal organic framework with nickel and tungsten polyoxometalate clusters, which the authors posit facilitates efficient electron transfer in a stable structure. —Jake S. Yeston

Abstract

Stable, nonprecious catalysts are vital for large-scale alkaline water electrolysis. Here, we report a grafted superstructure, MOF@POM, formed by self-assembling a metal-organic framework (MOF) with polyoxometalate (POM). In situ electrochemical transformation converts MOF into active metal (oxy)hydroxides to produce a catalyst with a low overpotential of 178 millivolts at 10 milliamperes per square centimeter in alkaline electrolyte. An anion exchange membrane water electrolyzer incorporating this catalyst achieves 3 amperes per square centimeter at 1.78 volts at 80°C and stable operation at 2 amperes per square centimeter for 5140 hours at room temperature. In situ electrochemical spectroscopy and theoretical studies reveal that the synergistic interactions between metal atoms create a fast electron-transfer channel from catalytic iron and cobalt sites, nickel, and tungsten in the polyoxometalate to the electrode, stabilizing the metal sites and preventing dissolution.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました