生成系AIを用いた香りの自動創作

ad

2025-04-23 東京科学大学

東京科学大学(Science Tokyo)の研究チームは、生成系AIを活用して、言語表現から対応する香りを自動的に創作する技術を開発しました。この技術は、香り記述子(例:Woody、Spicy、Floralなど)を入力すると、対応するマススペクトルを生成し、そのスペクトルを基に精油を調合して香りを再現します。従来、香りの創作は専門的な知識と経験が必要でしたが、本技術により、非専門家でも意図した香りを創作できる可能性が広がります。実験では、生成された香りが入力された香り記述子に適合しているかを被験者に評価してもらい、高い一致率が得られました。この成果は、香り製品の開発効率向上やデジタル香り技術の発展に寄与することが期待されます。研究成果は、2025年3月27日付で「IEEE Access」に掲載されました。

<関連情報>

香りを創り出す生成拡散ネットワーク Generative Diffusion Network for Creating Scents

Manuel Aleixandre; Dani Prasetyawan; Takamichi Nakamoto
IEEE Access  Published:27 March 2025
DOI:https://doi.org/10.1109/ACCESS.2025.3555273

OGDiffusion generates new scents by conditioning mass spectrometry (MS) profiles on odor descriptors. Using Pine Scotch essential oil as a reference (green circle), the network reproduces its MS profile (blue squares) and creates new spectra with modified odor descriptors (orange and yellow stars). Principal Component Analysis (PCA) shows how changes in descriptors shift the generated MS profiles, enabling targeted fragrance design.

OGDiffusion generates new scents by conditioning mass spectrometry (MS) profiles on odor descriptors. Using Pine Scotch essential oil as a reference (green circle), the network reproduces its MS profile (blue squares) and creates new spectra with modified odor descriptors (orange and yellow stars). Principal Component Analysis (PCA) shows how changes in descriptors shift the generated MS profiles, enabling targeted fragrance design.

Abstract

This paper introduces a novel application of generative diffusion networks for creating scents. The research presents a generative diffusion network designed to create new aromas with specified, required odor descriptors using essential oils as the basic components. The model uses mass spectrometry data of essential oils as latent embedding space of the essential oils. The generative network outputs mass spectrometry data as the primary output. These generated mass spectrometry profiles are then processed by non-negative least squares to create essential oils recipes that have the required odor descriptors. The results demonstrate the model’s ability to produce diverse and new aroma profiles, which are validated by sensory tests. The method can create new scents by mixing essential oils, making automated aroma design possible. This approach shows major progress in aroma design. These results suggest many uses in industries like perfumery and food and beverage, improving efficiency and creativity in making many different fragrances.

 

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました