データモデル統合の新手法で多機能AIに近づく(New Approach for Easily Merging Data Models Brings Multi-Tasking AIs Closer to Reality)

ad

2025-04-18 ジョージア工科大学(Georgia Tech)

ジョージア工科大学の研究チームは、異なるタスク用のAIモデルを再訓練なしで統合する新手法「ZipIt!」を開発。同一アーキテクチャを持つモデル同士を特徴のジップ操作とマルチヘッド構造で統合し、性能を従来比20~60%向上。これにより、異なるデータで訓練されたモデルの統合が容易となり、マルチタスクAI実現への一歩となる。

<関連情報>

結び目を結ぶSVDによるモデル統合 Model merging with SVD to tie the Knots

George Stoica, Pratik Ramesh, Boglarka Ecsedi, Leshem Choshen, Judy Hoffman
arXiv  Submitted on 25 Oct 2024
DOI:https://doi.org/10.48550/arXiv.2410.19735

データモデル統合の新手法で多機能AIに近づく(New Approach for Easily Merging Data Models Brings Multi-Tasking AIs Closer to Reality)

Abstract

Recent model merging methods demonstrate that the parameters of fully-finetuned models specializing in distinct tasks can be combined into one model capable of solving all tasks without retraining. Yet, this success does not transfer well when merging LoRA finetuned models. We study this phenomenon and observe that the weights of LoRA finetuned models showcase a lower degree of alignment compared to their fully-finetuned counterparts. We hypothesize that improving this alignment is key to obtaining better LoRA model merges, and propose KnOTS to address this problem. KnOTS uses the SVD to jointly transform the weights of different LoRA models into an aligned space, where existing merging methods can be applied. In addition, we introduce a new benchmark that explicitly evaluates whether merged models are general models. Notably, KnOTS consistently improves LoRA merging by up to 4.3% across several vision and language benchmarks, including our new setting.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました