素数に関する新しい発見(A Math Professor Has a New Finding on Primes)

ad

2025-04-22 コロンビア大学

コロンビア大学の数学者Mehtaab Sawhney氏は、オックスフォード大学のBen Green教授と共に、「p2+4q2の形で表せる素数が無限に存在する」ことを証明した(ただしp, qともに素数)。この形に該当する素数の例には41(5² + 4×2²)、149(7² + 4×5²)などがある。これは素数の分布に関する長年の探究の一部であり、パターンの理解を深める重要な進展とされる。研究は精緻な数論的手法と協働作業によって1週間で完成した。

<関連情報>

p2+nq2の形の素数 Primes of the form p2+nq2

Ben Green, Mehtaab Sawhney
arXiv  last revised 12 Oct 2024 (this version, v2)
DOI:https://doi.org/10.48550/arXiv.2410.04189

Abstract

Suppose that n is 0 or 4 modulo 6. We show that there are infinitely many primes of the form p2+nq2 with both p and q prime, and obtain an asymptotic for their number. In particular, when n=4 we verify the `Gaussian primes conjecture’ of Friedlander and Iwaniec.
We study the problem using the method of Type I/II sums in the number field Q(√−n). The main innovation is in the treatment of the Type II sums, where we make heavy use of two recent developments in the theory of Gowers norms in additive combinatorics: quantitative versions of so-called concatenation theorems, due to Kuca and to Kuca–Kravitz-Leng, and the quasipolynomial inverse theorem of Leng, Sah and the second author.

PRIMES OF THE FORM p2+nq2

BEN GREEN AND MEHTAAB SAWHNEY

Abstract.

Suppose that n ≡ 0 or n ≡ 4 mod 6. We show that there are infinitely many primes
of the form p2 + nq2 with both p and q prime, and obtain an asymptotic for their number. In
particular, when n = 4 we verify the ‘Gaussian primes conjecture’ of Friedlander and Iwaniec.
We study the problem using the method of Type I/II sums in the number field Q(√−n). The
main innovation is in the treatment of the Type II sums, where we make heavy use of two recent
developments in the theory of Gowers norms in additive combinatorics: quantitative versions of socalled concatenation theorems, due to Kuca and to Kuca–Kravitz-Leng, and the quasipolynomial inverse theorem of Leng, Sah and the second author.

Contents

1. Introduction
2. Number fields and weight functions
3. Sieve setup-reduction to Type I and Type II statements
4. Gowers norms and main proof framework
5. Preliminaries on concatenation and Gowers–Peluse norms
6. Type I up to X1/2/(log X)A
7. Type II estimates up to X1/2−o(1)
8. Computing the asymptotic
Appendix A. Properties of the Gowers and Gowers–Peluse norms
Appendix B. Proof of concatenation estimates
Appendix C. A large sieve bound in several dimensions
Appendix D. Number-theoretic bounds
References

1504数理・情報
ad
ad
Follow
ad
タイトルとURLをコピーしました