ワイヤレス技術とAIを融合する6G超えの新たな技術基盤を公開 (Virginia Tech Researchers Publish Revolutionary Blueprint to Fuse Wireless Technologies and AI)

ad

2025-03-18 バージニア工科大学 (Virginia Tech)

ワイヤレス技術とAIを融合する6G超えの新たな技術基盤を公開 (Virginia Tech Researchers Publish Revolutionary Blueprint to Fuse Wireless Technologies and AI)
Illustration courtesy of Walid Saad, Omar Hashash, and Christo Thomas.

バージニア工科大学のウォリード・サード教授らの研究チームは、次世代の無線通信システムにおいて、人間の「常識」を持つ人工知能(AI)を組み込むことで、真の革命をもたらす可能性があると指摘しています。従来のAIはデータから統計的パターンを抽出することに優れていますが、新しい状況に対する推論や一般化が苦手であり、人間のような常識を欠いています。研究チームは、無線ネットワークに人間のような推論能力を持つAIを組み込むことで、持続可能性、一般化能力、信頼性、説明可能性を向上させることができると提案しています。このビジョンの実現には10~15年の時間が必要とされていますが、現在から段階的に取り組むことで、思考し、計画し、想像する「生きた」無線ネットワークの構築が可能になると期待されています。

<関連情報>

人工知能(AGI)ネイティブワイヤレスシステム: 6Gを超える旅 Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G

Walid Saad; Omar Hashash; Christo Kurisummoottil Thomas; Christina Chaccour; Mérouane Debbah; Narayan Mandayam
Proceedings of the IEEE  Published:17 March 2025
DOI:https://doi.org/10.1109/JPROC.2025.3526887

Abstract

Building the next-generation wireless systems that could support services such as the metaverse, digital twins (DTs), and holographic teleportation is challenging to achieve exclusively through incremental advances to conventional wireless technologies like metasurfaces or holographic antennas. While the 6G concept of artificial intelligence (AI)-native networks promises to overcome some of the limitations of existing wireless technologies, current developments of AI-native wireless systems rely mostly on conventional AI tools such as auto-encoders and off-the-shelf artificial neural networks. However, those tools struggle to manage and cope with the complex, nontrivial scenarios faced in real-world wireless environments and the growing quality-of-experience (QoE) requirements of the aforementioned, emerging wireless use cases. In contrast, in this article, we propose to fundamentally revisit the concept of AI-native wireless systems, equipping them with the common sense necessary to transform them into artificial general intelligence (AGI)-native systems. Our envisioned AGI-native wireless systems acquire common sense by exploiting different cognitive abilities such as reasoning and analogy. These abilities in our proposed AGI-native wireless system are mainly founded on three fundamental components: a perception module, a world model, and an action-planning component. Collectively, these three fundamental components enable the four pillars of common sense that include dealing with unforeseen scenarios through horizontal generalizability, capturing intuitive physics, performing analogical reasoning, and filling in the blanks. Toward developing these components, we start by showing how the perception module can be built through abstracting real-world elements into generalizable representations. These representations are then used to create a world model, founded on principles of causality and hyperdimensional (HD) computing. Specifically, we propose a concrete definition of a world model, viewing it as an HD causal vector space that aligns with the intuitive physics of the real world—a cornerstone of common sense. In addition,we discuss how this proposed world model can enable analogical reasoning and manipulation of the abstract representations. Then, we show how the world model can drive an action-planning feature of the AGI-native network. In particular, we propose an intent-driven and objective-driven planning method that can maneuver the AGI-native network to plan its actions. These planning methods are based on brain-inspired frameworks such as integrated information theory and hierarchical abstractions that play a crucial role in enabling human-like decision-making. Next, we explain how an AGI-native network can be further exploited to enable three use cases related to human users and autonomous agent applications: 1) analogical reasoning for the next-generation DTs; 2) synchronized and resilient experiences for cognitive avatars; and 3) brain-level metaverse experiences exemplified by holographic teleportation. Finally, we conclude with a set of recommendations to ignite the quest for AGI-native systems. Ultimately, we envision this article as a roadmap for the next generation of wireless systems beyond 6G.

 

 

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました