機械学習エンコーダーが天気予報と津波予測を向上 (Machine Learning Encoder Improves Weather Forecasting and Tsunami Prediction)

ad

2025-03-14 ジョージア工科大学

ジョージア工科大学の博士課程学生フィリップ・シー氏とペン・チェン助教授は、新たな機械学習技術「Latent-EnSF」を開発し、極端な気象や沿岸洪水の予測精度を向上させました。 この技術は、既存の手法よりも高い精度、迅速な収束、効率性を示し、特に中期的な天気予報や浅水波の伝播予測において優れた性能を発揮しました。 従来、大規模でエネルギー集約的なスーパーコンピューターが必要とされていたこれらのシミュレーションを、より小型で効率的な機械学習モデルで実現可能としています。 現在、フロリダ州ピネラス郡での洪水リスクに対応するため、Latent-EnSFをリアルタイムの極端洪水イベント情報提供システムに統合するプロジェクトが進行中です。 この取り組みは、コミュニティの防災対策と安全性の向上に寄与することが期待されています。

<関連情報>

Latent-EnSF:疎な観測データによる高次元データ同化のための潜在アンサンブルスコアフィルター Latent-EnSF: A Latent Ensemble Score Filter for High-Dimensional Data Assimilation with Sparse Observation Data

Phillip Si, Peng Chen
arXive  last revised 11 Sep 2024 (this version, v3)
DOI:https://doi.org/10.48550/arXiv.2409.00127

 

Abstract

Accurate modeling and prediction of complex physical systems often rely on data assimilation techniques to correct errors inherent in model simulations. Traditional methods like the Ensemble Kalman Filter (EnKF) and its variants as well as the recently developed Ensemble Score Filters (EnSF) face significant challenges when dealing with high-dimensional and nonlinear Bayesian filtering problems with sparse observations, which are ubiquitous in real-world applications. In this paper, we propose a novel data assimilation method, Latent-EnSF, which leverages EnSF with efficient and consistent latent representations of the full states and sparse observations to address the joint challenges of high dimensionlity in states and high sparsity in observations for nonlinear Bayesian filtering. We introduce a coupled Variational Autoencoder (VAE) with two encoders to encode the full states and sparse observations in a consistent way guaranteed by a latent distribution matching and regularization as well as a consistent state reconstruction. With comparison to several methods, we demonstrate the higher accuracy, faster convergence, and higher efficiency of Latent-EnSF for two challenging applications with complex models in shallow water wave propagation and medium-range weather forecasting, for highly sparse observations in both space and time.

機械学習エンコーダーが天気予報と津波予測を向上 (Machine Learning Encoder Improves Weather Forecasting and Tsunami Prediction)

高次元非線形力学系追跡のためのアンサンブルスコアフィルター An Ensemble Score Filter for Tracking High-Dimensional Nonlinear Dynamical Systems

Feng Bao, Zezhong Zhang, Guannan Zhang
arXive  ast revised 13 Aug 2024 (this version, v2)
DOI:https://doi.org/10.48550/arXiv.2309.00983

Abstract

We propose an ensemble score filter (EnSF) for solving high-dimensional nonlinear filtering problems with superior accuracy. A major drawback of existing filtering methods, e.g., particle filters or ensemble Kalman filters, is the low accuracy in handling high-dimensional and highly nonlinear problems. EnSF attacks this challenge by exploiting the score-based diffusion model, defined in a pseudo-temporal domain, to characterizing the evolution of the filtering density. EnSF stores the information of the recursively updated filtering density function in the score function, instead of storing the information in a set of finite Monte Carlo samples (used in particle filters and ensemble Kalman filters). Unlike existing diffusion models that train neural networks to approximate the score function, we develop a training-free score estimation that uses a mini-batch-based Monte Carlo estimator to directly approximate the score function at any pseudo-spatial-temporal location, which provides sufficient accuracy in solving high-dimensional nonlinear problems as well as saves a tremendous amount of time spent on training neural networks. High-dimensional Lorenz-96 systems are used to demonstrate the performance of our method. EnSF provides surprising performance, compared with the state-of-the-art Local Ensemble Transform Kalman Filter method, in reliably and efficiently tracking extremely high-dimensional Lorenz systems (up to 1,000,000 dimensions) with highly nonlinear observation processes.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました