ハイエントロピー合金をより強化する 新たなセル界面構造の発見 ~3Dプリンティング材料設計の新展開~

ad

2025-03-17 東京大学

東京大学大学院工学系研究科の研究グループは、3Dプリンティング技術を用いて製造されたTi-Zr-Nb-Mo-Taハイエントロピー合金(HEA)において、材料強度を向上させる新たなサブミクロンスケールのセル界面構造を発見しました。この構造は、3Dプリンティング特有の超急冷過程により形成される「転位ネットワーク」と「相分離」が相乗的に作用することで生じ、従来の強化効果を大幅に上回る強度向上をもたらします。具体的には、一般的な鋳造法で作製された同合金と比較して、約960MPaの強化が確認されました。この成果は、3Dプリンティングを活用した新たな金属材料設計の可能性を示し、医療や航空宇宙分野など、特殊な環境下で使用可能な次世代金属材料の開発に貢献することが期待されます。

<関連情報>

レーザー粉末溶融法により作製したTi-Zr-Nb-Mo-Ta系高エントロピー合金における相分離誘起転位ネットワークセル構造 Phase-separation induced dislocation-network cellular structures in Ti-Zr-Nb-Mo-Ta high-entropy alloy processed by laser powder bed fusion

Han Chen, Daisuke Egusa, Zehao Li, Taisuke Sasaki, Ryosuke Ozasa, Takuya Ishimoto, Masayuki Okugawa, Yuichiro Koizumi, Takayoshi Nakano, Eiji Abe
Additive Manufacturing  Available online: 12 March 2025
DOI:https://doi.org/10.1016/j.addma.2025.104737

Graphical Abstract

Abstract

Hierarchical structures, such as cellular structures, elemental segregations, and dislocation-network, are often proposed to enhance the mechanical properties of high-entropy alloys (HEAs) fabricated via additive manufacturing (AM). The formation of cellular structures is often attributed to elemental segregation during the solidification process or thermal strain resulting from the AM process. Here, we present a novel cellular structure where phase-separation and dislocation-network coupled in Ti-Zr-Nb-Mo-Ta HEA processed by laser powder bed fusion (L-PBF). Electron microscopy observations and X-ray diffraction (XRD) analyses show that this unique cellular structure consists of Zr-rich and Ta-rich body-center cubic (BCC) phases as the cell-wall and the cell-core, respectively, with their lattice constant difference of about 1 %. Moreover, a higher density of dislocations forming distinct networks is detected within this cellular structure, whose density reached 8 × 1014 m−2. Machine learning analysis reveals that the dislocations preferentially occur on the Zr-rich BCC side, thus accommodating the strains significant around the boundaries between the two BCC phases. With the aid of thermodynamic simulations, we propose a formation mechanism of the present cellular structure, which is governed by the elemental partitioning behavior of Zr and Ta during a solid-state phase separation under rapid cooling. Boundaries with this phase separation are introduced as semi-coherent interfaces with misfit dislocations, introducing a high-density dislocation in the present material. This novel cellular structure can significantly enhance the strength of AM HEAs, providing valuable insights for developing high-performance AM metals through the design of hierarchical microstructures.

0703金属材料
ad
ad
Follow
ad
タイトルとURLをコピーしました