AIのスプリアス相関問題を克服する新手法を開発 (New Technique Overcomes Spurious Correlations Problem in AI)

ad

2025-03-10 ノースカロライナ州立大学 (NC State)

ノースカロライナ州立大学の研究者たちは、AIモデルが学習中に不要な相関関係(スプリアス・コリレーション)に依存する問題を解決する新しい手法を開発しました。 この手法は、AIが重要でない、あるいは誤解を招く情報に基づいて意思決定を行うのを防ぐことができます。従来の方法では、問題の原因となる特徴を特定し、トレーニングデータセットを修正する必要がありましたが、この新しいアプローチでは、スプリアスな特徴が何であるかを事前に知らなくても、問題を検出し解決することが可能です。この技術は、AIの信頼性と精度を向上させるための重要なステップとなるでしょう。

<関連情報>

データ刈り込みによる偽相関の排除 Severing Spurious Correlations with Data Pruning

Varun Mulchandani and Jung-Eun Kim
Presented: April 24-28, ICLR 2025

ABSTRACT

Deep neural networks have been shown to learn and rely on spurious correlations present in the data that they are trained on. Reliance on such correlations can cause these networks to malfunction when deployed in the real world, where these correlations may no longer hold. To overcome the learning of and reliance on such correlations, recent studies propose approaches that yield promising results. These works, however, study settings where the strength of the spurious signal is significantly greater than that of the core, invariant signal, making it easier to detect the presence of spurious features in individual training samples and allow for further processing. In this paper, we identify new settings where the strength of the spurious signal is relatively weaker, making it difficult to detect any spurious information while continuing to have catastrophic consequences. We also discover that spurious correlations are learned primarily due to only a handful of all the samples containing the spurious feature and develop a novel data pruning technique that identifies and prunes small subsets of the training data that contain these samples. Our proposed technique does not require inferred domain knowledge, information regarding the sample-wise presence or nature of spurious information, or human intervention. Finally, we show that such data pruning attains state-of-the-art performance on previously studied settings where spurious information is identifiable.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました