シングルドメイン強誘電体薄膜の形成に成功 (Researchers Achieve Single-domain Ferroelectric Thin Films Through Simple Temperature Control)

ad

2025-03-05 中国科学院 (CAS)

シングルドメイン強誘電体薄膜の形成に成功 (Researchers Achieve Single-domain Ferroelectric Thin Films Through Simple Temperature Control)
The conception of neuromorphic computing (left from Baidu) and pattern recognition accuracy of a single domain ferroelectric synapse (Image by IMR)

中国科学院金属研究所(IMR)の研究チームは、成長温度を上げるだけで単一ドメインの強誘電体薄膜を効率的に形成できることを発見した。パルスレーザー堆積法を用い、La₀.₆₇Sr₀.₃₃MnO₃(LSMO)基板上にBaTiO₃(BTO)薄膜を成長させたところ、800℃以上で単一ドメインが形成された。これは、Srイオンの拡散による表面帯電が分極を均一化するためと考えられる。本手法は従来の複雑な製造方法よりも簡便で、大規模な強誘電体デバイスの量産にも応用可能。オプトエレクトロニクスや神経形態工学的コンピューティングなど幅広い分野での活用が期待される。

<関連情報>

高性能神経シナプスのための界面元素蓄積誘起単一強誘電体ドメイン Interface Element Accumulation-Induced Single Ferroelectric Domain for High-Performance Neuromorphic Synapse

Xiaoqi Li, Jiaqi Liu, Fan Xu, Sajjad Ali, Han Wu, Biaohong Huang, Haoyue Deng, Yizhuo Li, Yuxuan Jiang, Zhen Fan, Yunlong Tang, Yujia Wang, Mohamed Bououdina, Teng Yang, Weijin Hu, Zhidong Zhang
Advanced Functional Materials  Published: 19 February 2025
DOI:https://doi.org/10.1002/adfm.202423225

Abstract

Ferroelectric (FE) synapses are promising for neuromorphic computing toward enhanced artificial intelligence systems. Nonetheless, there is a significant gap in understanding how to effectively tailor self-polarization and its implications on synaptic device performance. Here, an approach using interfacial element accumulation is reported to tailor the self-polarization states of BaTiO3 (BTO)/La0.67Sr0.33MnO3 (LSMO) FE heterostructure into a single domain state. This single domain configuration results are demonstrated in a gradient distribution of oxygen vacancies across the film thickness, yielding an extraordinary on/off ratio of 107 in Pt/BTO/LSMO FE diodes. This giant resistive switching enables the long-term potentiation and long-term depression synaptic functions of excellent linearity and symmetry (with a nonsymmetry factor as low as 0.1), leading to a supervised learning ability of the associated artificial neural network with a high pattern recognition accuracy of 95%. This work provides a simple design principle for FE single domain, which is substantial in enhancing the performance of FE synapses for neuromorphic computing.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました