機械学習アルゴリズムが中性子星の合体による重力波を瞬く間に解析(Machine-learning algorithm analyzes gravitational waves from merging neutron stars in the blink of an eye)

ad

2025-03-06 ロードアイランド大学(URI)

ロードアイランド大学の研究者マイケル・ピュラー氏を含む国際的な研究チームは、連星中性子星の合体によって生じる重力波を、従来の手法よりも数千倍速く、かつ高精度に解析できるニューラルネットワークを開発しました。 この手法により、従来約1時間かかっていた解析が1秒で可能となり、重力波の観測と同時に電磁波の観測を行う「マルチメッセンジャー天文学」の発展に寄与します。

<関連情報>

機械学習による連星中性子星合体のリアルタイム推論 Real-time inference for binary neutron star mergers using machine learning

Maximilian Dax,Stephen R. Green,Jonathan Gair,Nihar Gupte,Michael Pürrer,Vivien Raymond,Jonas Wildberger,Jakob H. Macke,Alessandra Buonanno &Bernhard Schölkopf
Nature  Publishe:d05 March 2025
DOI:https://doi.org/10.1038/s41586-025-08593-z

機械学習アルゴリズムが中性子星の合体による重力波を瞬く間に解析(Machine-learning algorithm analyzes gravitational waves from merging neutron stars in the blink of an eye)

Abstract

Mergers of binary neutron stars emit signals in both the gravitational-wave (GW) and electromagnetic spectra. Famously, the 2017 multi-messenger observation of GW170817 (refs. 1,2) led to scientific discoveries across cosmology3, nuclear physics4,5,6 and gravity7. Central to these results were the sky localization and distance obtained from the GW data, which, in the case of GW170817, helped to identify the associated electromagnetic transient, AT 2017gfo (ref. 8), 11 h after the GW signal. Fast analysis of GW data is critical for directing time-sensitive electromagnetic observations. However, owing to challenges arising from the length and complexity of signals, it is often necessary to make approximations that sacrifice accuracy. Here we present a machine-learning framework that performs complete binary neutron star inference in just 1 s without making any such approximations. Our approach enhances multi-messenger observations by providing: (1) accurate localization even before the merger; (2) improved localization precision by around 30% compared to approximate low-latency methods; and (3) detailed information on luminosity distance, inclination and masses, which can be used to prioritize expensive telescope time. Additionally, the flexibility and reduced cost of our method open new opportunities for equation-of-state studies. Finally, we demonstrate that our method scales to long signals, up to an hour in length, thus serving as a blueprint for data analysis for next-generation ground- and space-based detectors.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました