水の二重相構造の謎を解明(UC San Diego Team Uncovers Mystery of Water’s Hidden Dual Phases)

ad

2025-03-03 カリフォルニア大学サンディエゴ校 (UCSD)

カリフォルニア大学サンディエゴ校(UCSD)の研究チームは、スーパーコンピューター「Expanse」を活用した詳細なシミュレーションにより、水が極低温(約-73°C)かつ高圧(約1,250気圧)の条件下で、異なる構造と密度を持つ2つの液体状態に存在する可能性を明らかにしました。 この研究は、水の異常な性質への理解を深めるだけでなく、材料科学や生物学など、水が重要な役割を果たすさまざまな分野での新たな実験や応用の道を開く可能性があります。

<関連情報>

水中の液体-液体臨界点の位置に関する制約 Constraints on the location of the liquid–liquid critical point in water

F. Sciortino,Y. Zhai,S. L. Bore & F. Paesani
Nature Physics  Published:03 February 2025
DOI:https://doi.org/10.1038/s41567-024-02761-0

水の二重相構造の謎を解明(UC San Diego Team Uncovers Mystery of Water’s Hidden Dual Phases)

Abstract

The fascinating hypothesis that supercooled water may segregate into two distinct liquid phases, each with unique structures and densities, was first posited in 1992. This idea, initially based on numerical analyses with the ST2 water-like empirical potential, challenged the conventional understanding of water’s phase behaviour at the time and has since intrigued the scientific community. Over the past three decades, advancements in computational modelling—particularly through the advent of data-driven many-body potentials rigorously derived from first principles and augmented by the efficiency of neural networks—have greatly enhanced the accuracy of molecular simulations, enabling the exploration of the phase behaviour of water with unprecedented realism. Our study leverages these computational advances to probe the elusive liquid–liquid transition in supercooled water. Microsecond-long simulations with chemical accuracy, conducted over several years, provide compelling evidence that water indeed exists in two discernibly distinct liquid states at low temperature and high pressure. By pinpointing a realistic estimate for the location of the liquid–liquid critical point at ~198 K and ~1,250 atm, our study not only advances the current understanding of water’s anomalous behaviour but also establishes a basis for experimental validation. Importantly, our simulations indicate that the liquid–liquid critical point falls within temperature and pressure ranges that could potentially be experimentally probed in water nanodroplets, opening up the possibility for direct measurements.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました