新しい機械学習手法で岩石・堆積物の地球化学元素濃度をシミュレート (New Machine Learning Approach Simulates Geochemical Element Concentrations in Rocks and Stream Sediments)

ad

2025-02-25 中国科学院 (CAS)

中国科学院新疆生態与地理研究所の李諾教授率いる研究チームは、岩石や河川堆積物中の未測定の地球化学元素濃度をシミュレーションする新たな手法を開発しました。この研究は『Ore Geology Reviews』誌に掲載されています。地球化学データは、基礎地質研究、鉱物探査、環境評価など多くの科学分野で重要な役割を果たしますが、元素分析の高コストなどにより、データが限られることが多く、データ解析や応用に課題がありました。研究チームは、ランダムフォレストという機械学習モデルを適用し、未測定の地球化学元素を予測する手法を開発しました。このアプローチにより、自然界における異なる元素間の複雑な関係性を明らかにし、地球化学プロセスの包括的な理解が可能となります。この手法は、地質学、環境科学、土壌学などの分野で、データの欠落を補完し、より深い洞察を提供するものと期待されています。

<関連情報>

機械学習を利用して地球化学元素間の暗黙の関連性を発見する Uncover implicit associations among geochemical elements using machine learning

Shuguang Zhou, Zhizhong Cheng, Jinlin Wang, Nuo Li, Guo Jiang
Ore Geology Reviews  Available online: 16 February 2025
DOI:https://doi.org/10.1016/j.oregeorev.2025.106506

Graphical abstract

新しい機械学習手法で岩石・堆積物の地球化学元素濃度をシミュレート (New Machine Learning Approach Simulates Geochemical Element Concentrations in Rocks and Stream Sediments)

Highlights

  • Most of the major trace elements in rock and stream sediments can be reliably simulated using random forest models.
  • Adding feature variables can improve the simulation result of geochemical element content in the random forest model.
  • The method proposed in this study can assist in detecting potential errors in geochemical data.
  • The method proposed in this study provides a viable and reliable solution for imputing censored or missing values in geochemical data.

Abstract

The production of geochemical data serves diverse purposes, and a variety of analytical methods are utilized for analyzing geochemical element content. However, due to limitations in project funds, censored or missing values are common in geochemical data. This scarcity of data becomes more pronounced when dealing with large datasets. Regrettably, numerous data analysis techniques are unable to process datasets containing missing values, which presents a significant hurdle for researchers who depend on geochemical data. To address this issue, here we employed a random forest model to simulate the geochemical elements of rocks and stream sediments. By comparing and analyzing the effects of model parameters and feature variable selection on the simulation results of major and trace elements, the study found that with appropriate model parameters and variable selection, the simulation results for many elements are reliable, and the generalization performance of the random forest model is satisfactory. This research sheds light on the inherent correlations among various elements in nature, offers solutions to the challenges posed by missing values in geochemical data, and provides valuable technical support for disciplines such as geology, environmental science and soil science.

1902環境測定
ad
ad
Follow
ad
タイトルとURLをコピーしました