ミツバチの巣の健康を遠隔監視するセンサー技術(Beehive sensors offer hope in saving honeybee colonies)

ad

2025-02-21 カリフォルニア大学リバーサイド校(UCR)

ミツバチの巣の健康を遠隔監視するセンサー技術(Beehive sensors offer hope in saving honeybee colonies)

A low-cost heat sensor on a beehive frame (UCR photo)

カリフォルニア大学リバーサイド校(UC Riverside)のコンピュータサイエンスチームは、商業養蜂に革新をもたらす可能性のあるセンサー技術「Electronic Bee-Veterinarian(EBV)」を開発しました。この技術は、低コストの温度センサーと予測モデルを組み合わせ、巣箱内の温度を遠隔で監視し、危険な温度に達する前に養蜂家に警告を提供します。これにより、極端な気象条件や病気、農薬曝露、食糧不足などでミツバチが巣箱の温度を調整できなくなる前に、予防的な対策を講じることが可能となります。EBVは、巣箱内の温度データを収集し、アルゴリズムにより数日前から巣箱の状態を予測します。このシステムは、養蜂家がリアルタイムで巣箱の健康状態を把握し、労力とコストの削減に寄与すると期待されています。

<関連情報>

EBV+を用いたミツバチ時系列の原理的マイニング、予測、モニタリング Principled Mining, Forecasting and Monitoring of Honeybee Time Series with EBV+

Mst. Shamima Hossain, Christos Faloutsos, Boris Baer, Hyoseung Kim, Vassilis J. Tsotras

ACM Transactions on Knowledge Discovery from Data  Published:21 February 2025

DOI:https://doi.org/10.1145/3719014

Abstract

Honeybees, as natural crop pollinators, play a significant role in biodiversity and food production for human civilization. Bees actively regulate hive temperature (homeostasis) to maintain a colony’s proper functionality. Deviations from usual thermoregulation behavior due to external stressors (e.g., extreme environmental temperature, parasites, pesticide exposure, etc.) indicate an impending colony collapse. Anticipating such threats by forecasting hive temperature and finding changes in temperature patterns would allow beekeepers to take early preventive measures and avoid critical issues. In that case, how can we model bees’ thermoregulation behavior for an interpretable and effective hive monitoring system?

In this paper, we propose the principled EBV + (Electronic Bee-Veterinarian plus) method based on the thermal diffusion equation and a novel ‘sigmoid’ feedback-loop (P) controller for analyzing hive health with the following properties: (i) it is effective on multiple, real-world beehive time sequences (recorded and streaming), (ii) it is explainable with only a few parameters (e.g., hive health factor) that beekeepers can easily quantify and trust, (iii) it issues proactive alerts to beekeepers before any potential issue affecting homeostasis becomes detrimental, and (iv) it is scalable with a time complexity of O(t) for reconstructing and O(t×m) for finding cuts of a sequence with C time-ticks. Experimental results on multiple real-world time sequences showcase the potential and practical feasibility of EBV+. Our method yields accurate forecasting (up to 72% improvement in RMSE) with up to 600 times fewer parameters compared to baselines (ARX, seasonal ARX, Holt-winters, and DeepAR), as well as detects discontinuities and raises alerts that coincide with domain experts’ opinions. Moreover, EBV+ is scalable and fast, taking less than 1 minute on a stock laptop to reconstruct two months of sensor data.

1200農業一般
ad
ad
Follow
ad
タイトルとURLをコピーしました