近傍宇宙最大の超構造体を発見(Largest superstructure in the nearby universe discovered)

ad

2025-02-19 マックス・プランク研究所

マックス・プランク地球外物理学研究所とマックス・プランク物理学研究所の研究チームは、ROSAT X線衛星のデータを用いて、宇宙でこれまでに知られている中で最大の超構造体を発見しました。この構造体は68の銀河団から成り、全長は約14億光年に及びます。主にダークマターで構成されており、地球から比較的近い宇宙領域に位置しています。この発見は、宇宙の大規模構造の理解を深める重要な手がかりとなります。

<関連情報>

近傍宇宙で最大の構造を解き明かす クイープ超構造の発見 Unveiling the largest structures in the nearby Universe: Discovery of the Quipu superstructure

Hans Boehringer, Gayoung Chon, Joachim Truemper, Renee C. Kraan-Korteweg, Norbert Schartel
arXiv  Submitted on 31 Jan 2025]
DOI:https://doi.org/10.48550/arXiv.2501.19236

近傍宇宙最大の超構造体を発見(Largest superstructure in the nearby universe discovered)

Abstract

For a precise determination of cosmological parameters we need to understand the effects of the local large-scale structure of the Universe on the measurements. They include modifications of the cosmic microwave background, distortions of sky images by large-scale gravitational lensing, and the influence of large-scale streaming motions on measurements of the Hubble constant. The streaming motions, for example, originate from mass concentrations with distances up to 250 Mpc. In this paper we provide the first all-sky assessment of the largest structures at distances between 130 and 250 Mpc and discuss their observational consequences, using X-ray galaxy clusters to map the matter density distribution. Among the five most prominent superstructures found, the largest has a length longer than 400 Mpc with an estimated mass of about 2 10e17 Msun. This entity, which we named Quipu, is the largest cosmic structure discovered to date. These superstructures contain about 45% of the galaxy clusters, 30% of the galaxies, 25% of the matter, and occupy a volume fraction of 13%, thus constituting a major part of the Universe. The galaxy density is enhanced in the environment of superstructures out to larger distances from the nearest member clusters compared to the outskirts of clusters in the field. We find superstructures with similar properties in simulations based on Lambda-CDM cosmology models. We show that the superstructures should produce a modification on the cosmic microwave background through the integrated Sachs-Wolf effect. Searching for this effect in the Planck data we found a signal of the expected strength, however, with low significance. Characterising these superstructures is also important for astrophysical research, for example the study of the environmental dependence of galaxy evolution as well as for precision tests of cosmological models.

1701物理及び化学
ad
ad
Follow
ad
タイトルとURLをコピーしました