AI補助言語ツールの信頼性と人間の認識のミスマッチを発見(UC Irvine Study Finds Mismatch Between Human Perception and Reliability of AI-Assisted Language Tools)

ad

2025-01-22 カリフォルニア大学アーバイン校 (UCI)

UCアーバイン大学の研究によると、大規模言語モデル(LLM)の応答精度と、それを利用する人々の認識にはギャップがあることが判明しました。特に、LLMの回答が誤っていても自信を持って表示される場合、人々はその正確性を過大評価する傾向があります。研究では、LLMが回答に不確実性を示す言語(例:「私はこの回答に自信がありません」)を追加することで、この誤解を軽減できることが示されました。また、回答の説明が長いほど、ユーザーはその信頼性を高く評価する傾向も観察されました。この研究は、AIが透明性を持って信頼性を示す必要性を強調しています。

<関連情報>

大規模言語モデルが知っていること、そして人々が知っていると思っていること What large language models know and what people think they know

Mark Steyvers,Heliodoro Tejeda,Aakriti Kumar,Catarina Belem,Sheer Karny,Xinyue Hu,Lukas W. Mayer & Padhraic Smyth
Nature Machine Intelligence  Published:21 January 2025
DOI:https://doi.org/10.1038/s42256-024-00976-7

AI補助言語ツールの信頼性と人間の認識のミスマッチを発見(UC Irvine Study Finds Mismatch Between Human Perception and Reliability of AI-Assisted Language Tools)

Abstract

As artificial intelligence systems, particularly large language models (LLMs), become increasingly integrated into decision-making processes, the ability to trust their outputs is crucial. To earn human trust, LLMs must be well calibrated such that they can accurately assess and communicate the likelihood of their predictions being correct. Whereas recent work has focused on LLMs’ internal confidence, less is understood about how effectively they convey uncertainty to users. Here we explore the calibration gap, which refers to the difference between human confidence in LLM-generated answers and the models’ actual confidence, and the discrimination gap, which reflects how well humans and models can distinguish between correct and incorrect answers. Our experiments with multiple-choice and short-answer questions reveal that users tend to overestimate the accuracy of LLM responses when provided with default explanations. Moreover, longer explanations increased user confidence, even when the extra length did not improve answer accuracy. By adjusting LLM explanations to better reflect the models’ internal confidence, both the calibration gap and the discrimination gap narrowed, significantly improving user perception of LLM accuracy. These findings underscore the importance of accurate uncertainty communication and highlight the effect of explanation length in influencing user trust in artificial-intelligence-assisted decision-making environments.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました