人工知能アルゴリズムで粒子加速器を調整(Artificial intelligence algorithms used to tune particle accelerators)

ad

2025-01-16 ロスアラモス国立研究所

ロスアラモス国立研究所は、機械学習を活用して粒子加速器をリアルタイムで調整するAIアルゴリズムを開発しました。特に、深層学習技術(cDVAE)を用いた拡散モデルにより、粒子ビームの状態を非侵襲的に診断し、高精度な制御を可能にします。このアプローチは、複雑な加速器システムの自律的な調整を実現し、ビーム運用時間を増加させ、より精密な実験結果を提供します。ヨーロッパXFEL施設やLBNLのHiRESビームラインでの実証実験で成功を収め、加速器の最適化と科学的発見を促進する技術として期待されています。

<関連情報>

cDVAE:粒子加速器ビーム6次元位相空間投影診断のためのVAEガイド拡散 cDVAE: VAE-guided diffusion for particle accelerator beam 6D phase space projection diagnostics

Alexander Scheinker
Scientific Report  Published:26 November 2024
DOI:https://doi.org/10.1038/s41598-024-80751-1

人工知能アルゴリズムで粒子加速器を調整(Artificial intelligence algorithms used to tune particle accelerators)

Abstract

Imaging the 6D phase space of a beam in a particle accelerator in a single shot is currently impossible. Single shot beam measurements only exist for certain 2D beam projections and these methods are destructive. A virtual diagnostic that can generate an accurate prediction of a beam’s 6D phase space would be incredibly useful for precisely controlling the beam. In this work, a generative conditional diffusion- based approach to creating a virtual diagnostic of all 15 unique 2D projections of a beam’s 6D phase space is developed. The diffusion process is guided by a combination of scalar parameters and images that are converted to low-dimensional latent vector representation by a variational autoencoder (VAE). We demonstrate that conditional diffusion guided by a VAE (cDVAE) can accurately reconstruct all 15 of the unique 2D projections of a charged particle beam’s 6D phase space for the HiRES compact accelerator.

 

粒子加速器ビーム診断のための条件付き誘導生成拡散 Conditional guided generative diffusion for particle accelerator beam diagnostics

Alexander Scheinker
Scientific Report  Published:19 August 2024
DOI:https://doi.org/10.1038/s41598-024-70302-z

Figure 1

Abstract

Advanced accelerator-based light sources such as free electron lasers (FEL) accelerate highly relativistic electron beams to generate incredibly short (10s of femtoseconds) coherent flashes of light for dynamic imaging, whose brightness exceeds that of traditional synchrotron-based light sources by orders of magnitude. FEL operation requires precise control of the shape and energy of the extremely short electron bunches whose characteristics directly translate into the properties of the produced light. Control of short intense beams is difficult due to beam characteristics drifting with time and complex collective effects such as space charge and coherent synchrotron radiation. Detailed diagnostics of beam properties are therefore essential for precise beam control. Such measurements typically rely on a destructive approach based on a combination of a transverse deflecting resonant cavity followed by a dipole magnet in order to measure a beam’s 2D time vs energy longitudinal phase-space distribution. In this paper, we develop a non-invasive virtual diagnostic of an electron beam’s longitudinal phase space at megapixel resolution (1024 × 1024) based on a generative conditional diffusion model. We demonstrate the model’s generative ability on experimental data from the European X-ray FEL.

2004放射線利用
ad
ad
Follow
ad
タイトルとURLをコピーしました