AIが養豚の収益性を最適化(AI optimizes hog farming profitability)

ad

2024-11-25 カリフォルニア大学リバーサイド校(UCR)

AIが養豚の収益性を最適化(AI optimizes hog farming profitability)
A hog farm in Elma, Iowa. H(Photo by Scott Olson/Getty Images)

カリフォルニア大学リバーサイド校の研究者らは、人工知能(AI)を活用して養豚業の収益性を向上させる手法を開発しました。このAIモデルは、豚の出荷時期を最適化することで、従来の方法に比べて約22%の利益増加を実現しました。具体的には、豚の体重、飼料コスト、豚肉価格、契約上の出荷義務などの多様な要因を考慮し、最適な出荷タイミングを提案します。この手法は、農業や小売業など、他の分野にも応用可能であり、AIを用いた意思決定支援の新たな可能性を示しています。

<関連情報>

養豚場の仕上げ段階管理への経験的根拠に基づく分析(EGA)アプローチ: 意思決定支援および経営学習ツールとしての深層強化学習 An Empirically Grounded Analytical (EGA) Approach to Hog Farm Finishing Stage Management: Deep Reinforcement Learning as Decision Support and Managerial Learning Tool

Panos Kouvelis,Ye Liu,Danko Turcic
Social Science Research Network  Last revised: 29 Oct 2024

Abstract

In hog farming, optimizing hog sales is a complex challenge due to uncertain factors such as hog availability, market prices, and operating costs. This study uses a Markov Decision Process (MDP) to model these decisions, revealing the importance of the final weeks in profit management. The MDP’s intractability due to the curse of dimensionality leads us to employ Deep Reinforcement Learning (DRL) for optimization. Using real-world and synthetic data, our DRL model outperforms existing practices. However, it lacks interpretability, hindering trust and legal compliance in the food industry. To address this, we introduce “managerial learning,” extracting actionable insights from DRL outputs using classification trees that would have been difficult to obtain otherwise. We leverage these insights to devise a smart heuristic that significantly beats the current heuristic.

This study has broader implications for operations management, where DRL can solve complex dynamic optimization problems that are often intractable due to dimensionality. By applying methods such as classification trees and DRL, one can scrutinize solutions for actionable managerial insights that can enhance existing practices with straightforward planning guidelines.

1201畜産
ad
ad
Follow
ad
タイトルとURLをコピーしました