機械学習が最もリスクの高い地下水サイトを予測し、水質監視を改善する(Machine Learning Predicts Highest-Risk Groundwater Sites to Improve Water Quality Monitoring)

ad

2024-11-12 ノースカロライナ州立大学(NCState)

ノースカロライナ州立大学の研究チームは、限られた水質サンプルから地下水供給に含まれる無機汚染物質を予測する機械学習フレームワークを開発しました。このツールは、規制当局や公衆衛生当局が特定の帯水層を優先的に水質検査する際に役立ちます。この概念実証研究はアリゾナ州とノースカロライナ州に焦点を当てていますが、他の地域でも地下水質の重要なギャップを埋めるために適用可能です。地下水は何百万人もの飲料水源であり、しばしば健康リスクをもたらす汚染物質を含んでいます。しかし、多くの地域では完全な地下水質データセットが不足しています。この新しいツールは、限られたデータから他の汚染物質の存在と濃度を予測し、監視リソースを最適化することを可能にします。

<関連情報>

地下水中に共存する無機化学物質のリスク分析と処理可能性を向上させる複数データのインピュテーション手法 Multiple Data Imputation Methods Advance Risk Analysis and Treatability of Co-occurring Inorganic Chemicals in Groundwater

Akhlak U. Mahmood,Minhazul Islam,Alexey V. Gulyuk,Emily Briese,Carmen A. Velasco,Mohit Malu,Naushita Sharma,Andreas Spanias,Yaroslava G. Yingling,Paul Westerhoff,
Environmental Science & Technology  Published: November 7, 2024
DOI:https://doi.org/10.1021/acs.est.4c05203

Abstract

機械学習が最もリスクの高い地下水サイトを予測し、水質監視を改善する(Machine Learning Predicts Highest-Risk Groundwater Sites to Improve Water Quality Monitoring)

Accurately assessing and managing risks associated with inorganic pollutants in groundwater is imperative. Historic water quality databases are often sparse due to rationale or financial budgets for sample collection and analysis, posing challenges in evaluating exposure or water treatment effectiveness. We utilized and compared two advanced multiple data imputation techniques, AMELIA and MICE algorithms, to fill gaps in sparse groundwater quality data sets. AMELIA outperformed MICE in handling missing values, as MICE tended to overestimate certain values, resulting in more outliers. Field data sets revealed that 75% to 80% of samples exhibited no co-occurring regulated pollutants surpassing MCL values, whereas imputed values showed only 15% to 55% of the samples posed no health risks. Imputed data unveiled a significant increase, ranging from 2 to 5 times, in the number of sampling locations predicted to potentially exceed health-based limits and identified samples where 2 to 6 co-occurring chemicals may occur and surpass health-based levels. Linking imputed data to sampling locations can pinpoint potential hotspots of elevated chemical levels and guide optimal resource allocation for additional field sampling and chemical analysis. With this approach, further analysis of complete data sets allows state agencies authorized to conduct groundwater monitoring, often with limited financial resources, to prioritize sampling locations and chemicals to be tested. Given existing data and time constraints, it is crucial to identify the most strategic use of the available resources to address data gaps effectively. This work establishes a framework to enhance the beneficial impact of funding groundwater data collection by reducing uncertainty in prioritizing future sampling locations and chemical analyses.

1102水質管理
ad
ad
Follow
ad
タイトルとURLをコピーしました