「莫大な可能性 – しかしAIが常に正しいとは限らない」(“An enormous potential – but AI is not always right”)

ad

2004-10-01 スウェーデン王立工科大学(KTH)

カール・ヘンリック・ヨハンソン教授は、AIを人間社会に役立てるために協調して利用すべき強力なツールだと考えています。しかし、AIは万能ではなく、常に正しいわけではないとも強調しています。彼の研究は、エネルギー、交通、健康など多くの分野でAIの活用に焦点を当てています。AIは膨大なデータを処理する能力を持つ一方で、その信頼性と安全性が課題です。ヨハンソンは、AIの発展が社会に与える影響を慎重に見守り、責任を持って活用すべきと述べています。

<関連情報>

再帰的に生成されたデータで学習させたAIモデルは崩壊する AI models collapse when trained on recursively generated data

Ilia Shumailov,Zakhar Shumaylov,Yiren Zhao,Nicolas Papernot,Ross Anderson & Yarin Gal
Nature  Published:24 July 2024
DOI:https://doi.org/10.1038/s41586-024-07566-y

「莫大な可能性 – しかしAIが常に正しいとは限らない」(“An enormous potential – but AI is not always right”)

Abstract

Stable diffusion revolutionized image creation from descriptive text. GPT-2 (ref. 1), GPT-3(.5) (ref. 2) and GPT-4 (ref. 3) demonstrated high performance across a variety of language tasks. ChatGPT introduced such language models to the public. It is now clear that generative artificial intelligence (AI) such as large language models (LLMs) is here to stay and will substantially change the ecosystem of online text and images. Here we consider what may happen to GPT-{n} once LLMs contribute much of the text found online. We find that indiscriminate use of model-generated content in training causes irreversible defects in the resulting models, in which tails of the original content distribution disappear. We refer to this effect as ‘model collapse’ and show that it can occur in LLMs as well as in variational autoencoders (VAEs) and Gaussian mixture models (GMMs). We build theoretical intuition behind the phenomenon and portray its ubiquity among all learned generative models. We demonstrate that it must be taken seriously if we are to sustain the benefits of training from large-scale data scraped from the web. Indeed, the value of data collected about genuine human interactions with systems will be increasingly valuable in the presence of LLM-generated content in data crawled from the Internet.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました