原子による「書き込み」が量子デバイスの材料製造を変える可能性(‘Writing’ with atoms could transform materials fabrication for quantum devices)

ad

2024-09-24 オークリッジ国立研究所(ORNL)

原子による「書き込み」が量子デバイスの材料製造を変える可能性(‘Writing’ with atoms could transform materials fabrication for quantum devices)
A heater platform was designed to deliver atomized material to a sample, converting a scanning transmission electron microscope into a synthescope. Credit: Ondrej Dyck/ORNL, U.S. Dept. of Energy.

オークリッジ国立研究所の研究チームは、個々の原子を正確に配置する「書き込み」技術を開発し、量子デバイス向けの新しい材料を作成できる可能性を示しました。この技術では、スキャン透過型電子顕微鏡(STEM)を活用し、原子を特定の場所に配置することで、材料に新たな特性を与えることができます。この手法は量子コンピュータやセンサー、通信デバイスの開発に応用され、将来的に量子現象を活用した高度なデバイス製造が可能となります。

<関連情報>

ツイスト二層グラフェンにおける原子パターンのトップダウン作製 Top-Down Fabrication of Atomic Patterns in Twisted Bilayer Graphene

Ondrej Dyck, Sinchul Yeom, Andrew R. Lupini, Jacob L. Swett, Dale Hensley, Mina Yoon, Stephen Jesse
Advanced Materials  Published: 13 June 2023
DOI:https://doi.org/10.1002/adma.202302906

Abstract

Atomic-scale engineering typically involves bottom-up approaches, leveraging parameters such as temperature, partial pressures, and chemical affinity to promote spontaneous arrangement of atoms. These parameters are applied globally, resulting in atomic-scale features scattered probabilistically throughout the material. In a top-down approach, different regions of the material are exposed to different parameters, resulting in structural changes varying on the scale of the resolution. In this work, the application of global and local parameters is combined in an aberration-corrected scanning transmission electron microscope (STEM) to demonstrate atomic-scale precision patterning of atoms in twisted bilayer graphene. The focused electron beam is used to define attachment points for foreign atoms through the controlled ejection of carbon atoms from the graphene lattice. The sample environment is staged with nearby source materials such that the sample temperature can induce migration of the source atoms across the sample surface. Under these conditions, the electron-beam (top-down) enables carbon atoms in the graphene to be replaced spontaneously by diffusing adatoms (bottom-up). Using image-based feedback control, arbitrary patterns of atoms and atom clusters are attached to the twisted bilayer graphene with limited human interaction. The role of substrate temperature on adatom and vacancy diffusion is explored by first-principles simulations.

原子ごとの直接書き込み Atom-by-Atom Direct Writing

Ondrej DyckAndrew R. Lupini and Stephen Jesse
Nano Letters  Published: March 6, 2023
DOI:https://doi.org/10.1021/acs.nanolett.3c00114

Abstract

Abstract Image

Direct-write processes enable the alteration or deposition of materials in a continuous, directable, sequential fashion. In this work, we demonstrate an electron beam direct-write process in an aberration-corrected scanning transmission electron microscope. This process has several fundamental differences from conventional electron-beam-induced deposition techniques, where the electron beam dissociates precursor gases into chemically reactive products that bond to a substrate. Here, we use elemental tin (Sn) as a precursor and employ a different mechanism to facilitate deposition. The atomic-sized electron beam is used to generate chemically reactive point defects at desired locations in a graphene substrate. Temperature control of the sample is used to enable the precursor atoms to migrate across the surface and bond to the defect sites, thereby enabling atom-by-atom direct writing.

0403電子応用
ad
ad
Follow
ad
タイトルとURLをコピーしました