量子センサー設計のための一般的なフレームワークを開発(Researchers Develop General Framework for Designing Quantum Sensors)

ad

2024-07-30 ノースカロライナ州立大学(NCState)

ノースカロライナ州立大学とマサチューセッツ工科大学の研究者は、量子センサーの高感度化を図るプロトコルを開発しました。従来の信号処理フィルタ設計の原理を量子システムに応用し、無限次元の量子システム(ボソニックオシレーター)を二レベルのキュービットに結合するアルゴリズムフレームワークを設計。これにより、特定の信号にセンサーをチューニングし、単一の測定で信号の有無を判定できます。研究は、量子リソースを効率的に利用し、コストのかかる繰り返し測定を必要としないため、さまざまな量子センサーに応用可能です。この研究は、「Quantum」誌に掲載され、アイザック・L・チャン教授らの協力により実施されました。

<関連情報>

シングルショット量子信号処理干渉計 Single-shot Quantum Signal Processing Interferometry

Jasmine Sinanan-Singh, Gabriel L. Mintzer, Isaac L. Chuang, and Yuan Liu
Quantum  Published:2024-07-30
DOI:https://doi.org/10.22331/q-2024-07-30-1427

Abstract

Quantum systems of infinite dimension, such as bosonic oscillators, provide vast resources for quantum sensing. Yet, a general theory on how to manipulate such bosonic modes for sensing beyond parameter estimation is unknown. We present a general algorithmic framework, quantum signal processing interferometry (QSPI), for quantum sensing at the fundamental limits of quantum mechanics by generalizing Ramsey-type interferometry. Our QSPI sensing protocol relies on performing nonlinear polynomial transformations on the oscillator’s quadrature operators by generalizing quantum signal processing (QSP) from qubits to hybrid qubit-oscillator systems. We use our QSPI sensing framework to make efficient binary decisions on a displacement channel in the single-shot limit. Theoretical analysis suggests the sensing accuracy, given a single-shot qubit measurement, scales inversely with the sensing time or circuit depth of the algorithm. We further concatenate a series of such binary decisions to perform parameter estimation in a bit-by-bit fashion. Numerical simulations are performed to support these statements. Our QSPI protocol offers a unified framework for quantum sensing using continuous-variable bosonic systems beyond parameter estimation and establishes a promising avenue toward efficient and scalable quantum control and quantum sensing schemes beyond the NISQ era.

量子センサー設計のための一般的なフレームワークを開発(Researchers Develop General Framework for Designing Quantum Sensors)

Featured image: Pictorial illustration of how in the bosonic QSP interferometry (QSPI) protocol, the qubit measurement enacts a duality between a polynomial transformation on the bosonic quadrature operators ^x<?XML:NAMESPACE PREFIX = “[default] http://www.w3.org/1998/Math/MathML” NS = “http://www.w3.org/1998/Math/MathML” />x^ and a polynomial transformation on the sensing parameter ββ via QSPI.

Popular summary

Quantum sensing shows promise for more powerful sensing capability that can approach the fundamental limit set by the law of quantum mechanics, but the challenge lies in being able to direct these sensors to find the signals we want. Inspired by classical signal processing filter design principles, we generalized these filter designs to quantum sensing systems, which allows us to ‘fine-tune’ an infinite dimensional quantum oscillator by coupling it to a simple two-level quantum system. Interferometry was used to encode the results into the qubit state as another nonlinear polynomial function of the underlying signal, which is then measured for readout. This novel quantum signal processing interferometry protocol allows answering binary decision problems with only a “single-shot” measurement on the qubit. These decision protocols can be chained together for quantum parameter estimation as well.
Our work provides a general theoretical framework for designing quantum sensing protocols for a variety of quantum sensors based on leading quantum hardware, including trapped ions, superconducting platform, and neutral atoms, in a fairly simple way.

1700応用理学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました