「デジタル・ツイン」がワイヤレス・ネットワークをより高速で信頼性の高いものにする方法(How a ‘Digital Twin’ Can Make Wireless Networks Faster, More Reliable)

ad

2024-07-24 ノースカロライナ州立大学(NCState)

「デジタル・ツイン」がワイヤレス・ネットワークをより高速で信頼性の高いものにする方法(How a ‘Digital Twin’ Can Make Wireless Networks Faster, More Reliable)Photo credit: Franck.

コンピュータサイエンス研究者たちは、ワイヤレスネットワークを高速かつ信頼性の高いものにするための新しい方法を開発しました。この方法は「デジタルツイン」と呼ばれる技術を使用し、ネットワークの仮想モデルを作成します。エッジキャッシングは、ユーザーが将来使用する可能性のあるデータを事前にサーバーに保存することで、迅速なデータ提供を可能にします。新しい最適化手法「D-REC」は、リアルタイムデータを利用してシミュレーションを行い、どのデータをエッジサーバーに保存すべきかを予測します。これにより、ネットワークのパフォーマンスと信頼性が向上し、データの過負荷を事前に防ぐこともできます。実験結果から、D-RECは従来の方法よりも優れた性能を示しました。

<関連情報>

ワイヤレスネットワークにおける信頼性の高いエッジキャッシングのためのデジタルツイン支援によるデータ駆動型最適化 Digital Twin-Assisted Data-Driven Optimization for Reliable Edge Caching in Wireless Networks

Zifan Zhang; Yuchen Liu; Zhiyuan Peng; Mingzhe Chen;…
IEEE Journal on Selected Areas in Communications  Published:22 July 2024
DOI:https://doi.org/10.1109/JSAC.2024.3431575

Abstract

Optimizing edge caching is crucial for the advancement of next-generation (nextG) wireless networks, ensuring high-speed and low-latency services for mobile users. Existing data-driven optimization approaches often lack awareness of the distribution of random data variables and focus solely on optimizing cache hit rates, neglecting potential reliability concerns, such as base station overload and unbalanced cache issues. This oversight can result in system crashes and degraded user experience. To bridge this gap, we introduce a novel digital twin-assisted optimization framework, called D-REC, which integrates reinforcement learning (RL) with diverse intervention modules to ensure reliable caching in nextG wireless networks. We first develop a joint vertical and horizontal twinning approach to efficiently create network digital twins, which are then employed by D-REC as RL optimizers and safeguards, providing ample datasets for training and predictive evaluation of our cache replacement policy. By incorporating reliability modules into a constrained Markov decision process, D-REC can adaptively adjust actions, rewards, and states to comply with advantageous constraints, minimizing the risk of network failures. Theoretical analysis demonstrates comparable convergence rates between D-REC and vanilla data-driven methods without compromising caching performance. Extensive experiments validate that D-REC outperforms conventional approaches in cache hit rate and load balancing while effectively enforcing predetermined reliability intervention modules.

 

 

1604情報ネットワーク
ad
ad
Follow
ad
タイトルとURLをコピーしました