迷宮をナビゲートする: AIはどのように複雑なデータサンプリングに取り組むか(Navigating the labyrinth: How AI tackles complex data sampling)

ad

2024-07-09 スイス連邦工科大学ローザンヌ校(EPFL)

人工知能(AI)の分野では、データのパターンを学び新たなデータを生成する生成モデルが進展しており、画像生成や自然言語生成などに利用されています。しかし、生成モデルの能力や限界に関する理論が不足しており、その開発と利用に影響を与える可能性があります。EPFLの科学者チームは、現代のニューラルネットワークベースの生成モデルの効率性を調査し、従来のサンプリング手法と比較しました。彼らは、データ分布を学習し、新しいデータを生成するフロー型、拡散型、自動回帰型生成モデルを分析し、ベイズ最適ノイズ除去問題としてサンプリングプロセスを理論的に評価しました。研究は、拡散型手法がノイズ除去において課題に直面する可能性があることを示しつつ、ニューラルネットワークベースのモデルが従来の手法を上回る場面も特定しました。この理解により、より堅牢で効率的な生成モデルの開発が期待されます。

<関連情報>

スピングラスの観点からフロー、拡散、自己回帰ニューラルネットワークを用いたサンプリング Sampling with flows, diffusion, and autoregressive neural networks from a spin-glass perspective

Davide Ghio, Yatin Dandi, Florent Krzakala, and Lenka Zdeborová
Proceedings of the National Academy of Sciences  Published:June 24, 2024
DOI:https://doi.org/10.1073/pnas.2311810121

迷宮をナビゲートする: AIはどのように複雑なデータサンプリングに取り組むか(Navigating the labyrinth: How AI tackles complex data sampling)

Significance

Sampling from a given probability distribution is fundamental across various disciplines, including physics, signal processing, and artificial intelligence. In recent years, the ascendancy of flow, diffusion, and autoregressive neural network methods has led to remarkable achievements. The theoretical understanding of these methods is challenging. Here, we analyze the performance of these techniques and compare to more traditional methods like Langevin dynamics and Monte Carlo Markov chains, particularly in the context of spin glass models and related inference problems. Our findings underscore that these techniques fall short in sampling specific distributions at high temperatures, a task at which conventional Monte Carlo methods succeed. In high signal-to-noise ratio inference tasks, we pinpoint regions where these techniques surpass the traditional approaches.

Abstract

Recent years witnessed the development of powerful generative models based on flows, diffusion, or autoregressive neural networks, achieving remarkable success in generating data from examples with applications in a broad range of areas. A theoretical analysis of the performance and understanding of the limitations of these methods remain, however, challenging. In this paper, we undertake a step in this direction by analyzing the efficiency of sampling by these methods on a class of problems with a known probability distribution and comparing it with the sampling performance of more traditional methods such as the Monte Carlo Markov chain and Langevin dynamics. We focus on a class of probability distribution widely studied in the statistical physics of disordered systems that relate to spin glasses, statistical inference, and constraint satisfaction problems. We leverage the fact that sampling via flow-based, diffusion-based, or autoregressive networks methods can be equivalently mapped to the analysis of a Bayes optimal denoising of a modified probability measure. Our findings demonstrate that these methods encounter difficulties in sampling stemming from the presence of a first-order phase transition along the algorithm’s denoising path. Our conclusions go both ways: We identify regions of parameters where these methods are unable to sample efficiently, while that is possible using standard Monte Carlo or Langevin approaches. We also identify regions where the opposite happens: standard approaches are inefficient while the discussed generative methods work well.

1600情報工学一般
ad
ad
Follow
ad
タイトルとURLをコピーしました