科学者たちが計算モデリングを使って難しい化学合成を導く(Scientists use computational modeling to guide a difficult chemical synthesis)

ad

2024-06-27 マサチューセッツ工科大学(MIT)

A glowing penicillin molecule.
A new way to drive chemical reactions could generate a wide variety of drugs containing azetidines, like Penicillin does.
Image: Jose-Luis Olivares, MIT; iStock

MITとミシガン大学の研究者たちは、薬理学的に有望な化合物であるアゼチジンを効率的に合成する新しい方法を発見しました。アゼチジンは窒素を含む4員環構造を持ち、これまでの合成が困難でした。研究チームは光触媒を使用し、アルケンとオキシムを反応させることでアゼチジンを生成する手法を開発しました。彼らは計算モデルを用いて、反応が成功する化合物の組み合わせを予測し、その予測を実験で検証しました。この方法は、製薬企業が有望な化合物を効率的に発見するのに役立つ可能性があります。

<関連情報>

可視光を利用した非環状オキシムとアルケンのアザパテルノビュキ反応によるアゼチジンの合成に成功 Visible light–mediated aza Paternò–Büchi reaction of acyclic oximes and alkenes to azetidines

EMILY R. WEARING, YU-CHENG YEH, GIANMARCO G. TERRONES, SEREN G. PARIKH, […], AND CORINNA S. SCHINDLER
Science  Published:27 Jun 2024
DOI:https://doi.org/10.1126/science.adj6771

Editor’s summary

Azetidines are saturated four-membered rings comprising three carbon centers and a nitrogen center. A seemingly intuitive way to make them would be to pair up the double bonds in an alkene (C=C) and an imine (C=N) using light, in analogy to the photocoupling of two alkenes to cyclobutanes. However, this approach has proven surprisingly constrained to specialized substrates. Wearing et al. report that modifying the electronics of the imine through oxime formation enables a more general photosensitized coupling with styrenes. —Jake S. Yeston

Abstract

The aza Paternò–Büchi reaction is a [2+2]-cycloaddition reaction between imines and alkenes that produces azetidines, four-membered nitrogen-containing heterocycles. Currently, successful examples rely primarily on either intramolecular variants or cyclic imine equivalents. To unlock the full synthetic potential of aza Paternò–Büchi reactions, it is essential to extend the reaction to acyclic imine equivalents. Here, we report that matching of the frontier molecular orbital energies of alkenes with those of acyclic oximes enables visible light–mediated aza Paternò–Büchi reactions through triplet energy transfer catalysis. The utility of this reaction is further showcased in the synthesis of epi-penaresidin B. Density functional theory computations reveal that a competition between the desired [2+2]-cycloaddition and alkene dimerization determines the success of the reaction. Frontier orbital energy matching between the reactive components lowers transition-state energy (ΔGǂ) values and ultimately promotes reactivity.

ad
0502有機化学製品
ad
ad


Follow
ad
タイトルとURLをコピーしました