AI制御のステーション、電気自動車を個人価格で充電可能に(AI-controlled stations can charge electric cars at a personal price)

ad

2024-05-31 チャルマース工科大学

AI制御のステーション、電気自動車を個人価格で充電可能に(AI-controlled stations can charge electric cars at a personal price)

As more and more people drive electric cars, congestion and queues can occur when many people need to charge at the same time. A new study from Chalmers University of Technology in Sweden shows how AI-controlled charging stations, through smart algorithms, can offer electric vehicle users personalised prices, and thus minimise both price and waiting time for customers. But the researchers point to the importance of taking the ethical issues seriously, as there is a risk that the artificial intelligence exploits information from motorists.

現在の商業用充電インフラは複雑で、プロバイダー間の競争やサブスクリプションが多様です。急速充電ステーションでは混雑や長い待ち時間が発生することがあります。チャルマース工科大学の研究者は、AI制御の急速充電ステーションが個別の価格を提供することで、電気自動車の運転者にとって価格と待ち時間を最小化できるかを調査しました。AIはバッテリーレベルや地理的位置に基づいて価格を調整し、運転者は有利な提案のみを受け入れることができます。研究では、ほとんどの場合、個別の価格が市場価格よりも低く設定されることが確認されました。ただし、バッテリーがほぼ空のときには価格が上昇することもありました。プライバシー保護と責任あるAIの導入が重要とされています。

<関連情報>

電気自動車のためのパーソナライズされたダイナミックプライシングポリシー: 強化学習アプローチ Personalized dynamic pricing policy for electric vehicles: Reinforcement learning approach

Sangjun Bae, Balázs Kulcsár, Sébastien Gros
Transportation Research Part C: Emerging Technologies  Available online: 4 March 2024
DOI:https://doi.org/10.1016/j.trc.2024.104540

Highlights

  • Applying reinforcement learning to pricing maximizes revenue in the EV charging market.
  • New highway charging station pricing concept introduced for EVs.
  • Personalized dynamic pricing yields higher revenue than ordinary pricing policy.
  • Sharing personal information is crucial for EV users and may be misused by AI.

Abstract

With the increasing number of fast-electric vehicle charging stations (fast-EVCSs) and the popularization of information technology, electricity price competition between fast-EVCSs is highly expected, in which the utilization of public and/or privacy-preserved information will play a crucial role. Self-interest electric vehicle (EV) users, on the other hand, try to select a fast-EVCS for charging in a way to maximize their utilities based on electricity price, estimated waiting time, and their state of charge. While existing studies have largely focused on finding equilibrium prices, this study proposes a personalized dynamic pricing policy (PeDP) for a fast-EVCS to maximize revenue using a reinforcement learning (RL) approach. We first propose a multiple fast-EVCSs competing simulation environment to model the selfish behavior of EV users using a game-based charging station selection model with a monetary utility function. In the environment, we propose a Q-learning-based PeDP to maximize fast-EVCS’ revenue. Through numerical simulations based on the environment: (1) we identify the importance of waiting time in the EV charging market by comparing the classic Bertrand competition model with the proposed PeDP for fast-EVCSs (from the system perspective); (2) we evaluate the performance of the proposed PeDP and analyze the effects of the information on the policy (from the service provider perspective), and the robustness of the proposed approach; and (3) it can be seen that privacy-preserved information sharing can be misused by artificial intelligence-based PeDP in a certain situation in the EV charging market (from the customer perspective).

0405電気設備1502サービスマネジメント
ad
ad
Follow
ad
タイトルとURLをコピーしました