イオン交換によりCO2分解触媒の性能が飛躍的に向上(Ion swap dramatically improves performance of CO2-defeating catalyst)

ad

2024-05-16 オークリッジ国立研究所(ORNL)

オークリッジ国立研究所のチームが、複数の材料からなる触媒の効率を向上させる革新的な方法を発見しました。この方法は、触媒の活性、選択性、安定性を高める設計の道を示しています。チームは、銅ナノ粒子をバリウムチタネート支持体に支持した触媒を研究し、酸素アニオンを水素アニオンに置換することで、メタノールの生成量を3倍にしました。このアプローチにより、廃棄された二酸化炭素を貴重な燃料や化学物質に変換する効率が大幅に向上しました。研究結果は「アンゲヴァンテ・ケミー」に掲載され、次世代の触媒設計に新しいパラダイムを提供します。

<関連情報>

メタノールへのCO2水素化のためのCu/BaTiO2.8H0.2触媒の性能向上における表面水素化物の重要な役割 Significant Roles of Surface Hydrides in Enhancing the Performance of Cu/BaTiO2.8H0.2 Catalyst for CO2 Hydrogenation to Methanol

Dr. Yang He, Dr. Yuanyuan Li, Dr. Ming Lei, Dr. Felipe Polo-Garzon, Dr. Jorge Perez-Aguilar, Dr. Simon R. Bare, Dr. Eric Formo, Dr. Hwangsun Kim, Dr. Luke Daemen, …
Angewandte Chemie International Edition  Published: 31 October 2023
DOI:https://doi.org/10.1002/anie.202313389

Graphical Abstract

Introducing hydrides into the lattice of BaTiO3 can notably enhance the methanol yield over a supported Cu catalyst in CO2 hydrogenation due to the direct participation of surface hydrides in the reaction and the modified electronic property of the interfacial sites in the Cu/ BaTiO2.8H0.2 catalyst.

イオン交換によりCO2分解触媒の性能が飛躍的に向上(Ion swap dramatically improves performance of CO2-defeating catalyst)

Abstract

Tuning the anionic site of catalyst supports can impact reaction pathways by creating active sites on the support or influencing metal-support interactions when using supported metal nanoparticles. This study focuses on CO2 hydrogenation over supported Cu nanoparticles, revealing a 3-fold increase in methanol yield when replacing oxygen anions with hydrides in the perovskite support (Cu/BaTiO2.8H0.2 yields ~146 mg/h/gCu vs. Cu/BaTiO3 yields ~50 mg/h/gCu). The contrast suggests that significant roles are played by the support hydrides in the reaction. Temperature programmed reaction and isotopic labelling studies indicate that BaTiO2.8H0.2 surface hydride species follow a Mars van Krevelen mechanism in CO2 hydrogenation, promoting methanol production. High-pressure steady-state isotopic transient kinetic analysis (SSITKA) studies suggest that Cu/BaTiO2.8H0.2 possesses both a higher density and more active and selective sites for methanol production compared to Cu/BaTiO3. An operando high-pressure diffuse reflectance infrared spectroscopy (DRIFTS)-SSITKA study shows that formate species are the major surface intermediates over both catalysts, and the subsequent hydrogenation steps of formate are likely rate-limiting. However, the catalytic reactivity of Cu/BaTiO2.8H0.2 towards the formate species is much higher than Cu/BaTiO3, likely due to the altered electronic structure of interface Cu sites by the hydrides in the support as validated by density functional theory (DFT) calculations.

0505化学装置及び設備
ad
ad
Follow
ad
タイトルとURLをコピーしました